Goto

Collaborating Authors

 Riabov, Anton V.


An AI Planning Solution to Scenario Generation for Enterprise Risk Management

AAAI Conferences

Scenario planning is a commonly used method by companies to develop their long-term plans. Scenario planning for risk management puts an added emphasis on identifying and managing emerging risk. While a variety of methods have been proposed for this purpose, we show that applying AI planning techniques to devise possible scenarios provides a unique advantage for scenario planning. Our system, the Scenario Planning Advisor (SPA), takes as input the relevant information from news and social media, representing key risk drivers, as well as the domain knowledge and generates scenarios that explain the key risk drivers and describe the alternative futures. To this end, we provide a characterization of the problem, knowledge engineering methodology, and transformation to planning. Furthermore, we describe the computation of the scenarios, lessons learned, and the feedback received from the pilot deployment of the SPA system in IBM.


State Projection via AI Planning

AAAI Conferences

Imagining the future helps anticipate and prepare for what is coming. This has great importance to many, if not all, human endeavors. In this paper, we develop the Planning Projector system prototype, which applies plan-recognition-as-planning technique to both explain the observations derived from analyzing relevant news and social media, and project a range of possible future state trajectories for human review. Unlike the plan recognition problem, where a set of goals, and often a plan library must be given as part of the input, the Planning Projector system takes as input the domain knowledge, a sequence of observations derived from the news, a time horizon, and the number of trajectories to produce. It then computes the set of trajectories by applying a planner capable of finding a set of high-quality plans on a transformed planning problem. The Planning Projector prototype integrates several components including: (1) knowledge engineering: the process of encoding the domain knowledge from domain experts; (2) data transformation: the problem of analyzing and transforming the raw data into a sequence of observations; (3) trajectory computation: characterizing the future state projection problem and computing a set of trajectories; (4) user interface: clustering and visualizing the trajectories. We evaluate our approach qualitatively and conclude that the Planning Projector helps users understand future possibilities so that they can make more informed decisions.