Goto

Collaborating Authors

 Ri, Ryokan


Self-Preference Bias in LLM-as-a-Judge

arXiv.org Artificial Intelligence

Automated evaluation leveraging large language models (LLMs), commonly referred to as LLM evaluators or LLM-as-a-judge, has been widely used in measuring the performance of dialogue systems. However, the self-preference bias in LLMs has posed significant risks, including promoting specific styles or policies intrinsic to the LLMs. Despite the importance of this issue, there is a lack of established methods to measure the self-preference bias quantitatively, and its underlying causes are poorly understood. In this paper, we introduce a novel quantitative metric to measure the self-preference bias. Our experimental results demonstrate that GPT-4 exhibits a significant degree of self-preference bias. To explore the causes, we hypothesize that LLMs may favor outputs that are more familiar to them, as indicated by lower perplexity. We analyze the relationship between LLM evaluations and the perplexities of outputs. Our findings reveal that LLMs assign significantly higher evaluations to outputs with lower perplexity than human evaluators, regardless of whether the outputs were self-generated. This suggests that the essence of the bias lies in perplexity and that the self-preference bias exists because LLMs prefer texts more familiar to them.


Self-Translate-Train: A Simple but Strong Baseline for Cross-lingual Transfer of Large Language Models

arXiv.org Artificial Intelligence

Cross-lingual transfer is a promising technique for utilizing data in a source language to improve performance in a target language. However, current techniques often require an external translation system or suffer from suboptimal performance due to over-reliance on cross-lingual generalization of multi-lingual pretrained language models. In this study, we propose a simple yet effective method called Self-Translate-Train. It leverages the translation capability of a large language model to generate synthetic training data in the target language and fine-tunes the model with its own generated data. We evaluate the proposed method on a wide range of tasks and show substantial performance gains across several non-English languages.


LEIA: Facilitating Cross-lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation

arXiv.org Artificial Intelligence

Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages. The source code is available at https://github.com/studio-ousia/leia.


Emergent Communication with Attention

arXiv.org Artificial Intelligence

To develop computational agents that better communicate using their own emergent language, we endow the agents with an ability to focus their attention on particular concepts in the environment. Humans often understand an object or scene as a composite of concepts and those concepts are further mapped onto words. We implement this intuition as cross-modal attention mechanisms in Speaker and Listener agents in a referential game and show attention leads to more compositional and interpretable emergent language. We also demonstrate how attention aids in understanding the learned communication protocol by investigating the attention weights associated with each message symbol and the alignment of attention weights between Speaker and Listener agents. Overall, our results suggest that attention is a promising mechanism for developing more human-like emergent language.