Goto

Collaborating Authors

 Rezaee, Mehdi


Semantically-informed Hierarchical Event Modeling

arXiv.org Artificial Intelligence

Prior work has shown that coupling sequential latent variable models with semantic ontological knowledge can improve the representational capabilities of event modeling approaches. In this work, we present a novel, doubly hierarchical, semi-supervised event modeling framework that provides structural hierarchy while also accounting for ontological hierarchy. Our approach consists of multiple layers of structured latent variables, where each successive layer compresses and abstracts the previous layers. We guide this compression through the injection of structured ontological knowledge that is defined at the type level of events: importantly, our model allows for partial injection of semantic knowledge and it does not depend on observing instances at any particular level of the semantic ontology. Across two different datasets and four different evaluation metrics, we demonstrate that our approach is able to out-perform the previous state-of-the-art approaches by up to 8.5%, demonstrating the benefits of structured and semantic hierarchical knowledge for event modeling.


RevUp: Revise and Update Information Bottleneck for Event Representation

arXiv.org Artificial Intelligence

The existence of external (``side'') semantic knowledge has been shown to result in more expressive computational event models. To enable the use of side information that may be noisy or missing, we propose a semi-supervised information bottleneck-based discrete latent variable model. We reparameterize the model's discrete variables with auxiliary continuous latent variables and a light-weight hierarchical structure. Our model is learned to minimize the mutual information between the observed data and optional side knowledge that is not already captured by the new, auxiliary variables. We theoretically show that our approach generalizes past approaches, and perform an empirical case study of our approach on event modeling. We corroborate our theoretical results with strong empirical experiments, showing that the proposed method outperforms previous proposed approaches on multiple datasets.


Discriminative and Generative Transformer-based Models For Situation Entity Classification

arXiv.org Artificial Intelligence

We re-examine the situation entity (SE) classification task with varying amounts of available training data. We exploit a Transformer-based variational autoencoder to encode sentences into a lower dimensional latent space, which is used to generate the text and learn a SE classifier. Test set and cross-genre evaluations show that when training data is plentiful, the proposed model can improve over the previous discriminative state-of-the-art models. Our approach performs disproportionately better with smaller amounts of training data, but when faced with extremely small sets (4 instances per label), generative RNN methods outperform transformers. Our work provides guidance for future efforts on SE and semantic prediction tasks, and low-label training regimes.