Goto

Collaborating Authors

 Reps, Thomas


Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation

arXiv.org Artificial Intelligence

Parameter-Efficient Fine-Tuning (PEFT) has become the standard for customising Foundation Models (FMs) to user-specific downstream tasks. However, typical PEFT methods require storing multiple task-specific adapters, creating scalability issues as these adapters must be housed and run at the FM server. Traditional prompt tuning offers a potential solution by customising them through task-specific input prefixes, but it under-performs compared to other PEFT methods like LoRA. To address this gap, we propose Low-Rank Prompt Adaptation (LOPA), a prompt-tuning-based approach that performs on par with state-of-the-art PEFT methods and full fine-tuning while being more parameter-efficient and not requiring a server-based adapter. LOPA generates soft prompts by balancing between sharing task-specific information across instances and customization for each instance. It uses a low-rank decomposition of the soft-prompt component encoded for each instance to achieve parameter efficiency. We provide a comprehensive evaluation on multiple natural language understanding and code generation and understanding tasks across a wide range of foundation models with varying sizes.


Coarse-Tuning Models of Code with Reinforcement Learning Feedback

arXiv.org Artificial Intelligence

Large Language Models (LLMs) pre-trained on code have recently emerged as the dominant approach to program synthesis. However, these models are trained using next-token prediction, which ignores the syntax and semantics of code. We propose RLCF, that further trains a pre-trained LLM via reinforcement learning, using feedback from a grounding function that scores the quality of the code. The grounding function uses (i) compiler-derived feedback on whether the code it generates passes a set of correctness checks; and (ii) feedback from a different LLM that compares the generated code to a reference code. RLCF is model- and language-agnostic. We empirically evaluate it on the MBJP and MathQA tasks for Java. Our experiments show that RLCF raises the odds that an LLM-generated program compiles, is executable, and produces the right output on tests, often allowing LLMs to match the performance of 2x-8x larger LLMs.


Neural Attribute Grammars for Semantics-Guided Program Generation

arXiv.org Artificial Intelligence

Existing deep models for code tend to be trained on syntactic program representations. We present an alternative, called Neural Attribute Grammars, that exposes the semantics of the target language to the training procedure using an attribute grammar. During training, our model learns to replicate the relationship between the syntactic rules used to construct a program, and the semantic attributes (for example, symbol tables) constructed from the context in which the rules are fired. We implement the approach as a system for conditional generation of Java programs modulo eleven natural requirements. Our experiments show that the system generates constraint-abiding programs with significantly higher frequency than a baseline model trained on syntactic program representations, and also in terms of generation accuracy.