Ren, Zhongzheng
PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation
Liu, Shaowei, Ren, Zhongzheng, Gupta, Saurabh, Wang, Shenlong
We present PhysGen, a novel image-to-video generation method that converts a single image and an input condition (e.g., force and torque applied to an object in the image) to produce a realistic, physically plausible, and temporally consistent video. Our key insight is to integrate model-based physical simulation with a data-driven video generation process, enabling plausible image-space dynamics. At the heart of our system are three core components: (i) an image understanding module that effectively captures the geometry, materials, and physical parameters of the image; (ii) an image-space dynamics simulation model that utilizes rigid-body physics and inferred parameters to simulate realistic behaviors; and (iii) an image-based rendering and refinement module that leverages generative video diffusion to produce realistic video footage featuring the simulated motion. The resulting videos are realistic in both physics and appearance and are even precisely controllable, showcasing superior results over existing data-driven image-to-video generation works through quantitative comparison and comprehensive user study. PhysGen's resulting videos can be used for various downstream applications, such as turning an image into a realistic animation or allowing users to interact with the image and create various dynamics. Project page: https://stevenlsw.github.io/physgen/
NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows
Tang, Zhenggang, Ren, Zhongzheng, Zhao, Xiaoming, Wen, Bowen, Tremblay, Jonathan, Birchfield, Stan, Schwing, Alexander
We present a method for automatically modifying a NeRF representation based on a single observation of a non-rigid transformed version of the original scene. Our method defines the transformation as a 3D flow, specifically as a weighted linear blending of rigid transformations of 3D anchor points that are defined on the surface of the scene. In order to identify anchor points, we introduce a novel correspondence algorithm that first matches RGB-based pairs, then leverages multi-view information and 3D reprojection to robustly filter false positives in two steps. We also introduce a new dataset for exploring the problem of modifying a NeRF scene through a single observation. Our dataset ( https://github.com/nerfdeformer/nerfdeformer ) contains 113 synthetic scenes leveraging 47 3D assets. We show that our proposed method outperforms NeRF editing methods as well as diffusion-based methods, and we also explore different methods for filtering correspondences.
StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D
Guo, Pengsheng, Hao, Hans, Caccavale, Adam, Ren, Zhongzheng, Zhang, Edward, Shan, Qi, Sankar, Aditya, Schwing, Alexander G., Colburn, Alex, Ma, Fangchang
In the realm of text-to-3D generation, utilizing 2D diffusion models through score distillation sampling (SDS) frequently leads to issues such as blurred appearances and multi-faced geometry, primarily due to the intrinsically noisy nature of the SDS loss. Our analysis identifies the core of these challenges as the interaction among noise levels in the 2D diffusion process, the architecture of the diffusion network, and the 3D model representation. To overcome these limitations, we present StableDreamer, a methodology incorporating three advances. First, inspired by InstructNeRF2NeRF, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss. This finding provides a novel tool to debug SDS, which we use to show the impact of time-annealing noise levels on reducing multi-faced geometries. Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition. Based on this observation, StableDreamer introduces a two-stage training strategy that effectively combines these aspects, resulting in high-fidelity 3D models. Third, we adopt an anisotropic 3D Gaussians representation, replacing Neural Radiance Fields (NeRFs), to enhance the overall quality, reduce memory usage during training, and accelerate rendering speeds, and better capture semi-transparent objects. StableDreamer reduces multi-face geometries, generates fine details, and converges stably.
Occupancy Planes for Single-view RGB-D Human Reconstruction
Zhao, Xiaoming, Hu, Yuan-Ting, Ren, Zhongzheng, Schwing, Alexander G.
Single-view RGB-D human reconstruction with implicit functions is often formulated as per-point classification. Specifically, a set of 3D locations within the view-frustum of the camera are first projected independently onto the image and a corresponding feature is subsequently extracted for each 3D location. The feature of each 3D location is then used to classify independently whether the corresponding 3D point is inside or outside the observed object. This procedure leads to sub-optimal results because correlations between predictions for neighboring locations are only taken into account implicitly via the extracted features. For more accurate results we propose the occupancy planes (OPlanes) representation, which enables to formulate single-view RGB-D human reconstruction as occupancy prediction on planes which slice through the camera's view frustum. Such a representation provides more flexibility than voxel grids and enables to better leverage correlations than per-point classification. On the challenging S3D data we observe a simple classifier based on the OPlanes representation to yield compelling results, especially in difficult situations with partial occlusions due to other objects and partial visibility, which haven't been addressed by prior work.
Class-agnostic Reconstruction of Dynamic Objects from Videos
Ren, Zhongzheng, Zhao, Xiaoming, Schwing, Alexander G.
We introduce REDO, a class-agnostic framework to REconstruct the Dynamic Objects from RGBD or calibrated videos. Compared to prior work, our problem setting is more realistic yet more challenging for three reasons: 1) due to occlusion or camera settings an object of interest may never be entirely visible, but we aim to reconstruct the complete shape; 2) we aim to handle different object dynamics including rigid motion, non-rigid motion, and articulation; 3) we aim to reconstruct different categories of objects with one unified framework. To address these challenges, we develop two novel modules. First, we introduce a canonical 4D implicit function which is pixel-aligned with aggregated temporal visual cues. Second, we develop a 4D transformation module which captures object dynamics to support temporal propagation and aggregation. We study the efficacy of REDO in extensive experiments on synthetic RGBD video datasets SAIL-VOS 3D and DeformingThings4D++, and on real-world video data 3DPW. We find REDO outperforms state-of-the-art dynamic reconstruction methods by a margin. In ablation studies we validate each developed component.
Semantic Tracklets: An Object-Centric Representation for Visual Multi-Agent Reinforcement Learning
Liu, Iou-Jen, Ren, Zhongzheng, Yeh, Raymond A., Schwing, Alexander G.
Solving complex real-world tasks, e.g., autonomous fleet control, often involves a coordinated team of multiple agents which learn strategies from visual inputs via reinforcement learning. Many existing multi-agent reinforcement learning (MARL) algorithms however don't scale to environments where agents operate on visual inputs. To address this issue, algorithmically, recent works have focused on non-stationarity and exploration. In contrast, we study whether scalability can also be achieved via a disentangled representation. For this, we explicitly construct an object-centric intermediate representation to characterize the states of an environment, which we refer to as `semantic tracklets.' We evaluate `semantic tracklets' on the visual multi-agent particle environment (VMPE) and on the challenging visual multi-agent GFootball environment. `Semantic tracklets' consistently outperform baselines on VMPE, and achieve a +2.4 higher score difference than baselines on GFootball. Notably, this method is the first to successfully learn a strategy for five players in the GFootball environment using only visual data.
3D Spatial Recognition without Spatially Labeled 3D
Ren, Zhongzheng, Misra, Ishan, Schwing, Alexander G., Girdhar, Rohit
We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition, requiring only scene-level class tags as supervision. WyPR jointly addresses three core 3D recognition tasks: point-level semantic segmentation, 3D proposal generation, and 3D object detection, coupling their predictions through self and cross-task consistency losses. We show that in conjunction with standard multiple-instance learning objectives, WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time. We demonstrate its efficacy using the ScanNet and S3DIS datasets, outperforming prior state of the art on weakly-supervised segmentation by more than 6% mIoU. In addition, we set up the first benchmark for weakly-supervised 3D object detection on both datasets, where WyPR outperforms standard approaches and establishes strong baselines for future work.
Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning
Ren, Zhongzheng, Yeh, Raymond A., Schwing, Alexander G.
Existing semi-supervised learning (SSL) algorithms use a single weight to balance the loss of labeled and unlabeled examples, i.e., all unlabeled examples are equally weighted. But not all unlabeled data are equal. In this paper we study how to use a different weight for every unlabeled example. Manual tuning of all those weights -- as done in prior work -- is no longer possible. Instead, we adjust those weights via an algorithm based on the influence function, a measure of a model's dependency on one training example. To make the approach efficient, we propose a fast and effective approximation of the influence function. We demonstrate that this technique outperforms state-of-the-art methods on semi-supervised image and language classification tasks.
UFO$^2$: A Unified Framework towards Omni-supervised Object Detection
Ren, Zhongzheng, Yu, Zhiding, Yang, Xiaodong, Liu, Ming-Yu, Schwing, Alexander G., Kautz, Jan
Existing work on object detection often relies on a single form of annotation: the model is trained using either accurate yet costly bounding boxes or cheaper but less expressive image-level tags. However, real-world annotations are often diverse in form, which challenges these existing works. In this paper, we present UFO$^2$, a unified object detection framework that can handle different forms of supervision simultaneously. Specifically, UFO$^2$ incorporates strong supervision (e.g., boxes), various forms of partial supervision (e.g., class tags, points, and scribbles), and unlabeled data. Through rigorous evaluations, we demonstrate that each form of label can be utilized to either train a model from scratch or to further improve a pre-trained model. We also use UFO$^2$ to investigate budget-aware omni-supervised learning, i.e., various annotation policies are studied under a fixed annotation budget: we show that competitive performance needs no strong labels for all data. Finally, we demonstrate the generalization of UFO$^2$, detecting more than 1,000 different objects without bounding box annotations.
Learning to Anonymize Faces for Privacy Preserving Action Detection
Ren, Zhongzheng, Lee, Yong Jae, Ryoo, Michael S.
There is an increasing concern in computer vision devices invading users' privacy by recording unwanted videos. On the one hand, we want the camera systems to recognize important events and assist human daily lives by understanding its videos, but on the other hand we want to ensure that they do not intrude people's privacy. In this paper, we propose a new principled approach for learning a video \emph{face anonymizer}. We use an adversarial training setting in which two competing systems fight: (1) a video anonymizer that modifies the original video to remove privacy-sensitive information while still trying to maximize spatial action detection performance, and (2) a discriminator that tries to extract privacy-sensitive information from the anonymized videos. The end result is a video anonymizer that performs pixel-level modifications to anonymize each person's face, with minimal effect on action detection performance. We experimentally confirm the benefits of our approach compared to conventional hand-crafted anonymization methods including masking, blurring, and noise adding. Code, demo, and more results can be found on our project page https://jason718.github.io/project/privacy/main.html.