Ren, Yuyang
Enhancing Relation Extraction via Supervised Rationale Verification and Feedback
Li, Yongqi, Miao, Xin, Zhou, Shen, Xu, Mayi, Ren, Yuyang, Qian, Tieyun
Despite the rapid progress that existing automated feedback methods have made in correcting the output of large language models (LLMs), these methods cannot be well applied to the relation extraction (RE) task due to their designated feedback objectives and correction manner. To address this problem, we propose a novel automated feedback framework for RE, which presents a rationale supervisor to verify the rationale and provides re-selected demonstrations as feedback to correct the initial prediction. Specifically, we first design a causal intervention and observation method to collect biased/unbiased rationales for contrastive training the rationale supervisor. Then, we present a verification-feedback-correction procedure to iteratively enhance LLMs' capability of handling the RE task. Extensive experiments prove that our proposed framework significantly outperforms existing methods.
AceMap: Knowledge Discovery through Academic Graph
Wang, Xinbing, Fu, Luoyi, Gan, Xiaoying, Wen, Ying, Zheng, Guanjie, Ding, Jiaxin, Xiang, Liyao, Ye, Nanyang, Jin, Meng, Liang, Shiyu, Lu, Bin, Wang, Haiwen, Xu, Yi, Deng, Cheng, Zhang, Shao, Kang, Huquan, Wang, Xingli, Li, Qi, Guo, Zhixin, Qi, Jiexing, Liu, Pan, Ren, Yuyang, Wu, Lyuwen, Yang, Jungang, Zhou, Jianping, Zhou, Chenghu
The exponential growth of scientific literature requires effective management and extraction of valuable insights. While existing scientific search engines excel at delivering search results based on relational databases, they often neglect the analysis of collaborations between scientific entities and the evolution of ideas, as well as the in-depth analysis of content within scientific publications. The representation of heterogeneous graphs and the effective measurement, analysis, and mining of such graphs pose significant challenges. To address these challenges, we present AceMap, an academic system designed for knowledge discovery through academic graph. We present advanced database construction techniques to build the comprehensive AceMap database with large-scale academic entities that contain rich visual, textual, and numerical information. AceMap also employs innovative visualization, quantification, and analysis methods to explore associations and logical relationships among academic entities. AceMap introduces large-scale academic network visualization techniques centered on nebular graphs, providing a comprehensive view of academic networks from multiple perspectives. In addition, AceMap proposes a unified metric based on structural entropy to quantitatively measure the knowledge content of different academic entities. Moreover, AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas through citation relationships and concept co-occurrence, and generating concise summaries informed by this evolutionary process. In addition, AceMap uses machine reading methods to generate potential new ideas at the intersection of different fields. Exploring the integration of large language models and knowledge graphs is a promising direction for future research in idea evolution. Please visit \url{https://www.acemap.info} for further exploration.