Goto

Collaborating Authors

 Ren, Weiming


OmniEdit: Building Image Editing Generalist Models Through Specialist Supervision

arXiv.org Artificial Intelligence

Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at \url{https://tiger-ai-lab.github.io/OmniEdit/}


MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark

arXiv.org Artificial Intelligence

In the age of large-scale language models, benchmarks like the Massive Multitask Language Understanding (MMLU) have been pivotal in pushing the boundaries of what AI can achieve in language comprehension and reasoning across diverse domains. However, as models continue to improve, their performance on these benchmarks has begun to plateau, making it increasingly difficult to discern differences in model capabilities. This paper introduces MMLU-Pro, an enhanced dataset designed to extend the mostly knowledge-driven MMLU benchmark by integrating more challenging, reasoning-focused questions and expanding the choice set from four to ten options. Additionally, MMLU-Pro eliminates the trivial and noisy questions in MMLU. Our experimental results show that MMLU-Pro not only raises the challenge, causing a significant drop in accuracy by 16% to 33% compared to MMLU but also demonstrates greater stability under varying prompts. With 24 different prompt styles tested, the sensitivity of model scores to prompt variations decreased from 4-5% in MMLU to just 2% in MMLU-Pro. Additionally, we found that models utilizing Chain of Thought (CoT) reasoning achieved better performance on MMLU-Pro compared to direct answering, which is in stark contrast to the findings on the original MMLU, indicating that MMLU-Pro includes more complex reasoning questions. Our assessments confirm that MMLU-Pro is a more discriminative benchmark to better track progress in the field. Figure 1: Comparing between MMLU and MMLU-Pro: (Left) Performance gap; (Center) Accuracy distributions affected by 24 prompts, with taller and thinner profiles indicating more stability and shorter and wider profiles indicating greater fluctuations; (Right) Performance using CoT vs. Direct.


AnyV2V: A Tuning-Free Framework For Any Video-to-Video Editing Tasks

arXiv.org Artificial Intelligence

In the dynamic field of digital content creation using generative models, state-of-the-art video editing models still do not offer the level of quality and control that users desire. Previous works on video editing either extended from image-based generative models in a zero-shot manner or necessitated extensive fine-tuning, which can hinder the production of fluid video edits. Furthermore, these methods frequently rely on textual input as the editing guidance, leading to ambiguities and limiting the types of edits they can perform. Recognizing these challenges, we introduce AnyV2V, a novel tuning-free paradigm designed to simplify video editing into two primary steps: (1) employing an off-the-shelf image editing model to modify the first frame, (2) utilizing an existing image-to-video generation model to generate the edited video through temporal feature injection. AnyV2V can leverage any existing image editing tools to support an extensive array of video editing tasks, including prompt-based editing, reference-based style transfer, subject-driven editing, and identity manipulation, which were unattainable by previous methods. AnyV2V can also support any video length. Our evaluation indicates that AnyV2V significantly outperforms other baseline methods in automatic and human evaluations by significant margin, maintaining visual consistency with the source video while achieving high-quality edits across all the editing tasks.


Video Diffusion Models: A Survey

arXiv.org Artificial Intelligence

Diffusion generative models have recently become a robust technique for producing and modifying coherent, high-quality video. This survey offers a systematic overview of critical elements of diffusion models for video generation, covering applications, architectural choices, and the modeling of temporal dynamics. Recent advancements in the field are summarized and grouped into development trends. The survey concludes with an overview of remaining challenges and an outlook on the future of the field.


StructLM: Towards Building Generalist Models for Structured Knowledge Grounding

arXiv.org Artificial Intelligence

Structured data sources, such as tables, graphs, and databases, are ubiquitous knowledge sources. Despite the demonstrated capabilities of large language models (LLMs) on plain text, their proficiency in interpreting and utilizing structured data remains limited. Our investigation reveals a notable deficiency in LLMs' ability to process structured data, e.g., ChatGPT lags behind state-of-the-art (SoTA) model by an average of 35%. To augment the Structured Knowledge Grounding (SKG) capabilities in LLMs, we have developed a comprehensive instruction tuning dataset comprising 1.1 million examples. Utilizing this dataset, we train a series of models, referred to as StructLM, based on the Mistral and the CodeLlama model family, ranging from 7B to 34B parameters. Our StructLM series surpasses task-specific models on 16 out of 18 evaluated datasets and establishes new SoTA performance on 8 SKG tasks. Furthermore, StructLM demonstrates strong generalization across 6 novel held-out SKG tasks, outperforming TableLlama by an average of 35\% and Flan-UL2 20B by an average of 10\%. Contrary to expectations, we observe that scaling model size offers marginal benefits, with StructLM-34B showing only slight improvements over StructLM-7B. This suggests that structured knowledge grounding is still a challenging task and requires more innovative design to push to a new level.


MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI

arXiv.org Artificial Intelligence

We introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. Unlike existing benchmarks, MMMU focuses on advanced perception and reasoning with domain-specific knowledge, challenging models to perform tasks akin to those faced by experts. The evaluation of 14 open-source LMMs as well as the proprietary GPT-4V(ision) and Gemini highlights the substantial challenges posed by MMMU. Even the advanced GPT-4V and Gemini Ultra only achieve accuracies of 56% and 59% respectively, indicating significant room for improvement. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence.