Ren, Hongwei
A Review of Human Emotion Synthesis Based on Generative Technology
Ma, Fei, Li, Yukan, Xie, Yifan, He, Ying, Zhang, Yi, Ren, Hongwei, Liu, Zhou, Yao, Wei, Ren, Fuji, Yu, Fei Richard, Ni, Shiguang
Human emotion synthesis is a crucial aspect of affective computing. It involves using computational methods to mimic and convey human emotions through various modalities, with the goal of enabling more natural and effective human-computer interactions. Recent advancements in generative models, such as Autoencoders, Generative Adversarial Networks, Diffusion Models, Large Language Models, and Sequence-to-Sequence Models, have significantly contributed to the development of this field. However, there is a notable lack of comprehensive reviews in this field. To address this problem, this paper aims to address this gap by providing a thorough and systematic overview of recent advancements in human emotion synthesis based on generative models. Specifically, this review will first present the review methodology, the emotion models involved, the mathematical principles of generative models, and the datasets used. Then, the review covers the application of different generative models to emotion synthesis based on a variety of modalities, including facial images, speech, and text. It also examines mainstream evaluation metrics. Additionally, the review presents some major findings and suggests future research directions, providing a comprehensive understanding of the role of generative technology in the nuanced domain of emotion synthesis.
Generative Technology for Human Emotion Recognition: A Scope Review
Ma, Fei, Yuan, Yucheng, Xie, Yifan, Ren, Hongwei, Liu, Ivan, He, Ying, Ren, Fuji, Yu, Fei Richard, Ni, Shiguang
Affective computing stands at the forefront of artificial intelligence (AI), seeking to imbue machines with the ability to comprehend and respond to human emotions. Central to this field is emotion recognition, which endeavors to identify and interpret human emotional states from different modalities, such as speech, facial images, text, and physiological signals. In recent years, important progress has been made in generative models, including Autoencoder, Generative Adversarial Network, Diffusion Model, and Large Language Model. These models, with their powerful data generation capabilities, emerge as pivotal tools in advancing emotion recognition. However, up to now, there remains a paucity of systematic efforts that review generative technology for emotion recognition. This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024. Specifically, this survey will firstly introduce the mathematical principles of different generative models and the commonly used datasets. Subsequently, through a taxonomy, it will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities in several aspects, including data augmentation, feature extraction, semi-supervised learning, cross-domain, etc. Finally, the review will outline future research directions, emphasizing the potential of generative models to advance the field of emotion recognition and enhance the emotional intelligence of AI systems.
Event-Based Eye Tracking. AIS 2024 Challenge Survey
Wang, Zuowen, Gao, Chang, Wu, Zongwei, Conde, Marcos V., Timofte, Radu, Liu, Shih-Chii, Chen, Qinyu, Zha, Zheng-jun, Zhai, Wei, Han, Han, Liao, Bohao, Wu, Yuliang, Wan, Zengyu, Wang, Zhong, Cao, Yang, Tan, Ganchao, Chen, Jinze, Pei, Yan Ru, Brüers, Sasskia, Crouzet, Sébastien, McLelland, Douglas, Coenen, Oliver, Zhang, Baoheng, Gao, Yizhao, Li, Jingyuan, So, Hayden Kwok-Hay, Bich, Philippe, Boretti, Chiara, Prono, Luciano, Lică, Mircea, Dinucu-Jianu, David, Grîu, Cătălin, Lin, Xiaopeng, Ren, Hongwei, Cheng, Bojun, Zhang, Xinan, Vial, Valentin, Yezzi, Anthony, Tsai, James
This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge. The task of the challenge focuses on processing eye movement recorded with event cameras and predicting the pupil center of the eye. The challenge emphasizes efficient eye tracking with event cameras to achieve good task accuracy and efficiency trade-off. During the challenge period, 38 participants registered for the Kaggle competition, and 8 teams submitted a challenge factsheet. The novel and diverse methods from the submitted factsheets are reviewed and analyzed in this survey to advance future event-based eye tracking research.