Goto

Collaborating Authors

 Remi Munos


Safe and Efficient Off-Policy Reinforcement Learning

Neural Information Processing Systems

In this work, we take a fresh look at some old and new algorithms for off-policy, return-based reinforcement learning. Expressing these in a common form, we derive a novel algorithm, Retrace(λ), with three desired properties: (1) it has low variance; (2) it safely uses samples collected from any behaviour policy, whatever its degree of "off-policyness"; and (3) it is efficient as it makes the best use of samples collected from near on-policy behaviour policies. We analyze the contractive nature of the related operator under both off-policy policy evaluation and control settings and derive online sample-based algorithms. We believe this is the first return-based off-policy control algorithm converging a.s. to Q


Memory-Efficient Backpropagation Through Time

Neural Information Processing Systems

We propose a novel approach to reduce memory consumption of the backpropagation through time (BPTT) algorithm when training recurrent neural networks (RNNs). Our approach uses dynamic programming to balance a trade-off between caching of intermediate results and recomputation. The algorithm is capable of tightly fitting within almost any user-set memory budget while finding an optimal execution policy minimizing the computational cost. Computational devices have limited memory capacity and maximizing a computational performance given a fixed memory budget is a practical use-case. We provide asymptotic computational upper bounds for various regimes. The algorithm is particularly effective for long sequences. For sequences of length 1000, our algorithm saves 95% of memory usage while using only one third more time per iteration than the standard BPTT.



Successor Features for Transfer in Reinforcement Learning

Neural Information Processing Systems

Transfer in reinforcement learning refers to the notion that generalization should occur not only within a task but also across tasks. We propose a transfer framework for the scenario where the reward function changes between tasks but the environment's dynamics remain the same. Our approach rests on two key ideas: successor features, a value function representation that decouples the dynamics of the environment from the rewards, and generalized policy improvement, a generalization of dynamic programming's policy improvement operation that considers a set of policies rather than a single one. Put together, the two ideas lead to an approach that integrates seamlessly within the reinforcement learning framework and allows the free exchange of information across tasks. The proposed method also provides performance guarantees for the transferred policy even before any learning has taken place. We derive two theorems that set our approach in firm theoretical ground and present experiments that show that it successfully promotes transfer in practice, significantly outperforming alternative methods in a sequence of navigation tasks and in the control of a simulated robotic arm.


Optimistic optimization of a Brownian

Neural Information Processing Systems

We address the problem of optimizing a Brownian motion. We consider a (random) realization W of a Brownian motion with input space in [0, 1]. Given W, our goal is to return an ε-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm.





Bounded Regret for Finite-Armed Structured Bandits

Neural Information Processing Systems

We study a new type of K-armed bandit problem where the expected return of one arm may depend on the returns of other arms. We present a new algorithm for this general class of problems and show that under certain circumstances it is possible to achieve finite expected cumulative regret. We also give problemdependent lower bounds on the cumulative regret showing that at least in special cases the new algorithm is nearly optimal.


Multiagent Evaluation under Incomplete Information

Neural Information Processing Systems

This paper investigates the evaluation of learned multiagent strategies in the incomplete information setting, which plays a critical role in ranking and training of agents. Traditionally, researchers have relied on Elo ratings for this purpose, with recent works also using methods based on Nash equilibria. Unfortunately, Elo is unable to handle intransitive agent interactions, and other techniques are restricted to zero-sum, two-player settings or are limited by the fact that the Nash equilibrium is intractable to compute. Recently, a ranking method called α-Rank, relying on a new graph-based game-theoretic solution concept, was shown to tractably apply to general games. However, evaluations based on Elo or α-Rank typically assume noise-free game outcomes, despite the data often being collected from noisy simulations, making this assumption unrealistic in practice. This paper investigates multiagent evaluation in the incomplete information regime, involving general-sum many-player games with noisy outcomes. We derive sample complexity guarantees required to confidently rank agents in this setting. We propose adaptive algorithms for accurate ranking, provide correctness and sample complexity guarantees, then introduce a means of connecting uncertainties in noisy match outcomes to uncertainties in rankings. We evaluate the performance of these approaches in several domains, including Bernoulli games, a soccer meta-game, and Kuhn poker.