Reily, Brian
Compositional Zero-Shot Learning for Attribute-Based Object Reference in Human-Robot Interaction
Gao, Peng, Jaafar, Ahmed, Reily, Brian, Reardon, Christopher, Zhang, Hao
Language-enabled robots have been widely studied over the past years to enable natural human-robot interaction and teaming in various real-world applications. Language-enabled robots must be able to comprehend referring expressions to identify a particular object from visual perception using a set of referring attributes extracted from natural language. However, visual observations of an object may not be available when it is referred to, and the number of objects and attributes may also be unbounded in open worlds. To address the challenges, we implement an attribute-based compositional zero-shot learning method that uses a list of attributes to perform referring expression comprehension in open worlds. We evaluate the approach on two datasets including the MIT-States and the Clothing 16K. The preliminary experimental results show that our implemented approach allows a robot to correctly identify the objects referred to by human commands.
Asynchronous Collaborative Localization by Integrating Spatiotemporal Graph Learning with Model-Based Estimation
Gao, Peng, Reily, Brian, Guo, Rui, Lu, Hongsheng, Zhu, Qingzhao, Zhang, Hao
Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization.