Goto

Collaborating Authors

 Reiffenhäuser, Rebecca


Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint

arXiv.org Artificial Intelligence

Constrained submodular maximization is a fundamental problem at the heart of discrete optimization. The reason for this is as simple as it is clear: submodular functions capture the notion of diminishing returns present in a wide variety of real-world settings. Consequently to its striking importance and coinciding NP-hardness [20], extensive research has been conducted on submodular maximization since the seventies (e.g., [15, 42]), with focus lately shifting towards handling the massive datasets emerging in modern applications. With a wide variety of possible constraints, often regarding cardinality, independence in a matroid, or knapsacktype restrictions, the number of applications is vast. To name just a few, there are recent works on feature selection in machine learning [13, 14, 32], influence maximization in viral marketing [2, 31], and data summarization [43, 38, 45]. Many of these applications have non-monotone submodular objectives, meaning that adding an element to an existing set might actually decrease its value. Two such examples are discussed in detail in Section 5. This work was supported by the ERC Advanced Grant 788893 AMDROMA "Algorithmic and Mechanism Design Research in Online Markets" and the MIUR PRIN project ALGADIMAR "Algorithms, Games, and Digital Markets."


Submodular Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with Near-optimal Adaptive Complexity

arXiv.org Artificial Intelligence

Submodular maximization is a classic algorithmic problem with multiple applications in data mining and machine learning; there, the growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the adaptive complexity, which captures the number of sequential rounds of parallel computation needed by an algorithm to terminate. In this work we obtain the first constant factor approximation algorithm for non-monotone submodular maximization subject to a knapsack constraint with near-optimal $O(\log n)$ adaptive complexity. Low adaptivity by itself, however, is not enough: a crucial feature to account for is represented by the total number of function evaluations (or value queries). Our algorithm asks $\tilde{O}(n^2)$ value queries, but can be modified to run with only $\tilde{O}(n)$ instead, while retaining a low adaptive complexity of $O(\log^2n)$. Besides the above improvement in adaptivity, this is also the first combinatorial approach with sublinear adaptive complexity for the problem and yields algorithms comparable to the state-of-the-art even for the special cases of cardinality constraints or monotone objectives.


Round-Robin Beyond Additive Agents: Existence and Fairness of Approximate Equilibria

arXiv.org Artificial Intelligence

Fair allocation of indivisible goods has attracted extensive attention over the last two decades, yielding numerous elegant algorithmic results and producing challenging open questions. The problem becomes much harder in the presence of strategic agents. Ideally, one would want to design truthful mechanisms that produce allocations with fairness guarantees. However, in the standard setting without monetary transfers, it is generally impossible to have truthful mechanisms that provide non-trivial fairness guarantees. Recently, Amanatidis et al. [2021] suggested the study of mechanisms that produce fair allocations in their equilibria. Specifically, when the agents have additive valuation functions, the simple Round-Robin algorithm always has pure Nash equilibria and the corresponding allocations are envy-free up to one good (EF1) with respect to the agents' true valuation functions. Following this agenda, we show that this outstanding property of the Round-Robin mechanism extends much beyond the above default assumption of additivity. In particular, we prove that for agents with cancelable valuation functions (a natural class that contains, e.g., additive and budget-additive functions), this simple mechanism always has equilibria and even its approximate equilibria correspond to approximately EF1 allocations with respect to the agents' true valuation functions. Further, we show that the approximate EF1 fairness of approximate equilibria surprisingly holds for the important class of submodular valuation functions as well, even though exact equilibria fail to exist!


Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint

Journal of Artificial Intelligence Research

Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern-day applications can render existing algorithms prohibitively slow. Moreover, frequently those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a 5.83-approximation and runs in O(n log n) time, i.e., at least a factor n faster than other state-of-the-art algorithms. The versatility of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a (9 + ε)-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data.


Allocating Indivisible Goods to Strategic Agents: Pure Nash Equilibria and Fairness

arXiv.org Artificial Intelligence

We consider the problem of fairly allocating a set of indivisible goods to a set of strategic agents with additive valuation functions. We assume no monetary transfers and, therefore, a mechanism in our setting is an algorithm that takes as input the reported -- rather than the true -- values of the agents. Our main goal is to explore whether there exist mechanisms that have pure Nash equilibria for every instance and, at the same time, provide fairness guarantees for the allocations that correspond to these equilibria. We focus on two relaxations of envy-freeness, namely envy-freeness up to one good (EF1), and envy-freeness up to any good (EFX), and we positively answer the above question. In particular, we study two algorithms that are known to produce such allocations in the non-strategic setting: Round-Robin (EF1 allocations for any number of agents) and a cut-and-choose algorithm of Plaut and Roughgarden [SIAM Journal of Discrete Mathematics, 2020] (EFX allocations for two agents). For Round-Robin we show that all of its pure Nash equilibria induce allocations that are EF1 with respect to the underlying true values, while for the algorithm of Plaut and Roughgarden we show that the corresponding allocations not only are EFX but also satisfy maximin share fairness, something that is not true for this algorithm in the non-strategic setting! Further, we show that a weaker version of the latter result holds for any mechanism for two agents that always has pure Nash equilibria which all induce EFX allocations.