Goto

Collaborating Authors

 Recht, Benjamin


Train faster, generalize better: Stability of stochastic gradient descent

arXiv.org Machine Learning

We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions. Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.


Parallel Correlation Clustering on Big Graphs

Neural Information Processing Systems

Given a similarity graph between items, correlation clustering (CC) groups similar items together and dissimilar ones apart. One of the most popular CC algorithms is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and obtains a 3-approximation ratio. Unfortunately, in practice KwikCluster requires a large number of clustering rounds, a potential bottleneck for large graphs.We present C4 and ClusterWild!, two algorithms for parallel correlation clustering that run in a polylogarithmic number of rounds, and provably achieve nearly linear speedups. C4 uses concurrency control to enforce serializability of a parallel clustering process, and guarantees a 3-approximation ratio. ClusterWild! is a coordination free algorithm that abandons consistency for the benefit of better scaling; this leads to a provably small loss in the 3 approximation ratio.We provide extensive experimental results for both algorithms, where we outperform the state of the art, both in terms of clustering accuracy and running time. We show that our algorithms can cluster billion-edge graphs in under 5 seconds on 32 cores, while achieving a 15x speedup.


Isometric sketching of any set via the Restricted Isometry Property

arXiv.org Machine Learning

In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high dimensions can be embedded into lower dimensions with near optimal distortion. We obtain our results by connecting dimensionality reduction of any set to dimensionality reduction of sparse vectors via a chaining argument.


Parallel Correlation Clustering on Big Graphs

arXiv.org Machine Learning

Given a similarity graph between items, correlation clustering (CC) groups similar items together and dissimilar ones apart. One of the most popular CC algorithms is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and obtains a 3-approximation ratio. Unfortunately, KwikCluster in practice requires a large number of clustering rounds, a potential bottleneck for large graphs. We present C4 and ClusterWild!, two algorithms for parallel correlation clustering that run in a polylogarithmic number of rounds and achieve nearly linear speedups, provably. C4 uses concurrency control to enforce serializability of a parallel clustering process, and guarantees a 3-approximation ratio. ClusterWild! is a coordination free algorithm that abandons consistency for the benefit of better scaling; this leads to a provably small loss in the 3-approximation ratio. We provide extensive experimental results for both algorithms, where we outperform the state of the art, both in terms of clustering accuracy and running time. We show that our algorithms can cluster billion-edge graphs in under 5 seconds on 32 cores, while achieving a 15x speedup.


The Randomized Causation Coefficient

arXiv.org Machine Learning

We are interested in learning causal relationships between pairs of random variables, purely from observational data. To effectively address this task, the state-of-the-art relies on strong assumptions regarding the mechanisms mapping causes to effects, such as invertibility or the existence of additive noise, which only hold in limited situations. On the contrary, this short paper proposes to learn how to perform causal inference directly from data, and without the need of feature engineering. In particular, we pose causality as a kernel mean embedding classification problem, where inputs are samples from arbitrary probability distributions on pairs of random variables, and labels are types of causal relationships. We validate the performance of our method on synthetic and real-world data against the state-of-the-art. Moreover, we submitted our algorithm to the ChaLearn's "Fast Causation Coefficient Challenge" competition, with which we won the fastest code prize and ranked third in the overall leaderboard.


Factoring nonnegative matrices with linear programs

arXiv.org Machine Learning

This paper describes a new approach, based on linear programming, for computing nonnegative matrix factorizations (NMFs). The key idea is a data-driven model for the factorization where the most salient features in the data are used to express the remaining features. More precisely, given a data matrix X, the algorithm identifies a matrix C such that X approximately equals CX and some linear constraints. The constraints are chosen to ensure that the matrix C selects features; these features can then be used to find a low-rank NMF of X. A theoretical analysis demonstrates that this approach has guarantees similar to those of the recent NMF algorithm of Arora et al. (2012). In contrast with this earlier work, the proposed method extends to more general noise models and leads to efficient, scalable algorithms. Experiments with synthetic and real datasets provide evidence that the new approach is also superior in practice. An optimized C++ implementation can factor a multigigabyte matrix in a matter of minutes.


Signal Recovery in Unions of Subspaces with Applications to Compressive Imaging

arXiv.org Machine Learning

In applications ranging from communications to genetics, signals can be modeled as lying in a union of subspaces. Under this model, signal coefficients that lie in certain subspaces are active or inactive together. The potential subspaces are known in advance, but the particular set of subspaces that are active (i.e., in the signal support) must be learned from measurements. We show that exploiting knowledge of subspaces can further reduce the number of measurements required for exact signal recovery, and derive universal bounds for the number of measurements needed. The bound is universal in the sense that it only depends on the number of subspaces under consideration, and their orientation relative to each other. The particulars of the subspaces (e.g., compositions, dimensions, extents, overlaps, etc.) does not affect the results we obtain. In the process, we derive sample complexity bounds for the special case of the group lasso with overlapping groups (the latent group lasso), which is used in a variety of applications. Finally, we also show that wavelet transform coefficients of images can be modeled as lying in groups, and hence can be efficiently recovered using group lasso methods.


Query Complexity of Derivative-Free Optimization

arXiv.org Machine Learning

This paper provides lower bounds on the convergence rate of Derivative Free Optimization (DFO) with noisy function evaluations, exposing a fundamental and unavoidable gap between the performance of algorithms with access to gradients and those with access to only function evaluations. However, there are situations in which DFO is unavoidable, and for such situations we propose a new DFO algorithm that is proved to be near optimal for the class of strongly convex objective functions. A distinctive feature of the algorithm is that it uses only Boolean-valued function comparisons, rather than function evaluations. This makes the algorithm useful in an even wider range of applications, such as optimization based on paired comparisons from human subjects, for example. We also show that regardless of whether DFO is based on noisy function evaluations or Boolean-valued function comparisons, the convergence rate is the same.


Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences

arXiv.org Machine Learning

Randomized algorithms that base iteration-level decisions on samples from some pool are ubiquitous in machine learning and optimization. Examples include stochastic gradient descent and randomized coordinate descent. This paper makes progress at theoretically evaluating the difference in performance between sampling with- and without-replacement in such algorithms. Focusing on least means squares optimization, we formulate a noncommutative arithmetic-geometric mean inequality that would prove that the expected convergence rate of without-replacement sampling is faster than that of with-replacement sampling. We demonstrate that this inequality holds for many classes of random matrices and for some pathological examples as well. We provide a deterministic worst-case bound on the gap between the discrepancy between the two sampling models, and explore some of the impediments to proving this inequality in full generality. We detail the consequences of this inequality for stochastic gradient descent and the randomized Kaczmarz algorithm for solving linear systems.


Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent

Neural Information Processing Systems

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and implementation that SGD can be implemented *without any locking*. We present an update scheme called Hogwild which allows processors access to shared memory with the possibility of overwriting each other's work. We show that when the associated optimization problem is sparse, meaning most gradient updates only modify small parts of the decision variable, then Hogwild achieves a nearly optimal rate of convergence. We demonstrate experimentally that Hogwild outperforms alternative schemes that use locking by an order of magnitude.