Goto

Collaborating Authors

 Recamonde-Mendoza, Mariana


Exploring the Feasibility of AI-Assisted Spine MRI Protocol Optimization Using DICOM Image Metadata

arXiv.org Artificial Intelligence

Artificial intelligence (AI) is increasingly being utilized to optimize magnetic resonance imaging (MRI) protocols. Given that image details are critical for diagnostic accuracy, optimizing MRI acquisition protocols is essential for enhancing image quality. While medical physicists are responsible for this optimization, the variability in equipment usage and the wide range of MRI protocols in clinical settings pose significant challenges. This study aims to validate the application of AI in optimizing MRI protocols using dynamic data from clinical practice, specifically DICOM metadata. To achieve this, four MRI spine exam databases were created, with the target attribute being the binary classification of image quality (good or bad). Five AI models were trained to identify trends in acquisition parameters that influence image quality, grounded in MRI theory. These trends were analyzed using SHAP graphs. The models achieved F1 performance ranging from 77% to 93% for datasets containing 292 or more instances, with the observed trends aligning with MRI theory. The models effectively reflected the practical realities of clinical MRI settings, offering a valuable tool for medical physicists in quality control tasks. In conclusion, AI has demonstrated its potential to optimize MRI protocols, supporting medical physicists in improving image quality and enhancing the efficiency of quality control in clinical practice.


Graph Neural Networks for Heart Failure Prediction on an EHR-Based Patient Similarity Graph

arXiv.org Artificial Intelligence

Objective: In modern healthcare, accurately predicting diseases is a crucial matter. This study introduces a novel approach using graph neural networks (GNNs) and a Graph Transformer (GT) to predict the incidence of heart failure (HF) on a patient similarity graph at the next hospital visit. Materials and Methods: We used electronic health records (EHR) from the MIMIC-III dataset and applied the K-Nearest Neighbors (KNN) algorithm to create a patient similarity graph using embeddings from diagnoses, procedures, and medications. Three models - GraphSAGE, Graph Attention Network (GAT), and Graph Transformer (GT) - were implemented to predict HF incidence. Model performance was evaluated using F1 score, AUROC, and AUPRC metrics, and results were compared against baseline algorithms. An interpretability analysis was performed to understand the model's decision-making process. Results: The GT model demonstrated the best performance (F1 score: 0.5361, AUROC: 0.7925, AUPRC: 0.5168). Although the Random Forest (RF) baseline achieved a similar AUPRC value, the GT model offered enhanced interpretability due to the use of patient relationships in the graph structure. A joint analysis of attention weights, graph connectivity, and clinical features provided insight into model predictions across different classification groups. Discussion and Conclusion: Graph-based approaches such as GNNs provide an effective framework for predicting HF. By leveraging a patient similarity graph, GNNs can capture complex relationships in EHR data, potentially improving prediction accuracy and clinical interpretability.


"A Nova Eletricidade: Aplica\c{c}\~oes, Riscos e Tend\^encias da IA Moderna -- "The New Electricity": Applications, Risks, and Trends in Current AI

arXiv.org Artificial Intelligence

The thought-provoking analogy between AI and electricity, made by computer scientist and entrepreneur Andrew Ng, summarizes the deep transformation that recent advances in Artificial Intelligence (AI) have triggered in the world. This chapter presents an overview of the ever-evolving landscape of AI, written in Portuguese. With no intent to exhaust the subject, we explore the AI applications that are redefining sectors of the economy, impacting society and humanity. We analyze the risks that may come along with rapid technological progress and future trends in AI, an area that is on the path to becoming a general-purpose technology, just like electricity, which revolutionized society in the 19th and 20th centuries. A provocativa compara\c{c}\~ao entre IA e eletricidade, feita pelo cientista da computa\c{c}\~ao e empreendedor Andrew Ng, resume a profunda transforma\c{c}\~ao que os recentes avan\c{c}os em Intelig\^encia Artificial (IA) t\^em desencadeado no mundo. Este cap\'itulo apresenta uma vis\~ao geral pela paisagem em constante evolu\c{c}\~ao da IA. Sem pretens\~oes de exaurir o assunto, exploramos as aplica\c{c}\~oes que est\~ao redefinindo setores da economia, impactando a sociedade e a humanidade. Analisamos os riscos que acompanham o r\'apido progresso tecnol\'ogico e as tend\^encias futuras da IA, \'area que trilha o caminho para se tornar uma tecnologia de prop\'osito geral, assim como a eletricidade, que revolucionou a sociedade dos s\'eculos XIX e XX.


Acoustic Identification of Ae. aegypti Mosquitoes using Smartphone Apps and Residual Convolutional Neural Networks

arXiv.org Artificial Intelligence

In this paper, we advocate in favor of smartphone apps as low-cost, easy-to-deploy solution for raising awareness among the population on the proliferation of Aedes aegypti mosquitoes. Nevertheless, devising such a smartphone app is challenging, for many reasons, including the required maturity level of techniques for identifying mosquitoes based on features that can be captured using smartphone resources. In this paper, we identify a set of (non-exhaustive) requirements that smartphone apps must meet to become an effective tooling in the fight against Ae. aegypti, and advance the state-of-the-art with (i) a residual convolutional neural network for classifying Ae. aegypti mosquitoes from their wingbeat sound, (ii) a methodology for reducing the influence of background noise in the classification process, and (iii) a dataset for benchmarking solutions for detecting Ae. aegypti mosquitoes from wingbeat sound recordings. From the analysis of accuracy and recall, we provide evidence that convolutional neural networks have potential as a cornerstone for tracking mosquito apps for smartphones.