Rayside, Derek
Autonomous Driving at Unsignalized Intersections: A Review of Decision-Making Challenges and Reinforcement Learning-Based Solutions
Al-Sharman, Mohammad, Edes, Luc, Sun, Bert, Jayakumar, Vishal, Daoud, Mohamed A., Rayside, Derek, Melek, William
Autonomous driving at unsignalized intersections is still considered a challenging application for machine learning due to the complications associated with handling complex multi-agent scenarios characterized by a high degree of uncertainty. Automating the decision-making process at these safety-critical environments involves comprehending multiple levels of abstractions associated with learning robust driving behaviors to enable the vehicle to navigate efficiently. In this survey, we aim at exploring the state-of-the-art techniques implemented for decision-making applications, with a focus on algorithms that combine Reinforcement Learning (RL) and deep learning for learning traversing policies at unsignalized intersections. The reviewed schemes vary in the proposed driving scenario, in the assumptions made for the used intersection model, in the tackled challenges, and in the learning algorithms that are used. We have presented comparisons for these techniques to highlight their limitations and strengths. Based on our in-depth investigation, it can be discerned that a robust decision-making scheme for navigating real-world unsignalized intersection has yet to be developed. Along with our analysis and discussion, we recommend potential research directions encouraging the interested players to tackle the highlighted challenges. By adhering to our recommendations, decision-making architectures that are both non-overcautious and safe, yet feasible, can be trained and validated in real-world unsignalized intersections environments.
RALACs: Action Recognition in Autonomous Vehicles using Interaction Encoding and Optical Flow
Zhou, Eddy, Zhuang, Alex, Budhwani, Alikasim, Dempster, Rowan, Li, Quanquan, Al-Sharman, Mohammad, Rayside, Derek, Melek, William
When applied to autonomous vehicle (AV) settings, action recognition can enhance an environment model's situational awareness. This is especially prevalent in scenarios where traditional geometric descriptions and heuristics in AVs are insufficient. However, action recognition has traditionally been studied for humans, and its limited adaptability to noisy, un-clipped, un-pampered, raw RGB data has limited its application in other fields. To push for the advancement and adoption of action recognition into AVs, this work proposes a novel two-stage action recognition system, termed RALACs. RALACs formulates the problem of action recognition for road scenes, and bridges the gap between it and the established field of human action recognition. This work shows how attention layers can be useful for encoding the relations across agents, and stresses how such a scheme can be class-agnostic. Furthermore, to address the dynamic nature of agents on the road, RALACs constructs a novel approach to adapting Region of Interest (ROI) Alignment to agent tracks for downstream action classification. Finally, our scheme also considers the problem of active agent detection, and utilizes a novel application of fusing optical flow maps to discern relevant agents in a road scene. We show that our proposed scheme can outperform the baseline on the ICCV2021 Road Challenge dataset and by deploying it on a real vehicle platform, we provide preliminary insight to the usefulness of action recognition in decision making.