Rawat, Danda B.
Digital Twin Enabled Site Specific Channel Precoding: Over the Air CIR Inference
Haider, Majumder, Ahmed, Imtiaz, Hassan, Zoheb, O'Shea, Timothy J., Liu, Lingjia, Rawat, Danda B.
This paper investigates the significance of designing a reliable, intelligent, and true physical environment-aware precoding scheme by leveraging an accurately designed channel twin model to obtain realistic channel state information (CSI) for cellular communication systems. Specifically, we propose a fine-tuned multi-step channel twin design process that can render CSI very close to the CSI of the actual environment. After generating a precise CSI, we execute precoding using the obtained CSI at the transmitter end. We demonstrate a two-step parameters' tuning approach to design channel twin by ray tracing (RT) emulation, then further fine-tuning of CSI by employing an artificial intelligence (AI) based algorithm can significantly reduce the gap between actual CSI and the fine-tuned digital twin (DT) rendered CSI. The simulation results show the effectiveness of the proposed novel approach in designing a true physical environment-aware channel twin model.
AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions
Hagos, Desta Haileselassie, Alami, Hassan El, Rawat, Danda B.
Artificial Intelligence (AI) techniques, particularly machine learning techniques, are rapidly transforming tactical operations by augmenting human decision-making capabilities. This paper explores AI-driven Human-Autonomy Teaming (HAT) as a transformative approach, focusing on how it empowers human decision-making in complex environments. While trust and explainability continue to pose significant challenges, our exploration focuses on the potential of AI-driven HAT to transform tactical operations. By improving situational awareness and supporting more informed decision-making, AI-driven HAT can enhance the effectiveness and safety of such operations. To this end, we propose a comprehensive framework that addresses the key components of AI-driven HAT, including trust and transparency, optimal function allocation between humans and AI, situational awareness, and ethical considerations. The proposed framework can serve as a foundation for future research and development in the field. By identifying and discussing critical research challenges and knowledge gaps in this framework, our work aims to guide the advancement of AI-driven HAT for optimizing tactical operations. We emphasize the importance of developing scalable and ethical AI-driven HAT systems that ensure seamless human-machine collaboration, prioritize ethical considerations, enhance model transparency through Explainable AI (XAI) techniques, and effectively manage the cognitive load of human operators.
Metaverse Survey & Tutorial: Exploring Key Requirements, Technologies, Standards, Applications, Challenges, and Perspectives
Rawat, Danda B., alami, Hassan El, Hagos, Desta Haileselassie
In this paper, we present a comprehensive survey of the metaverse, envisioned as a transformative dimension of next-generation Internet technologies. This study not only outlines the structural components of our survey but also makes a substantial scientific contribution by elucidating the foundational concepts underlying the emergence of the metaverse. We analyze its architecture by defining key characteristics and requirements, thereby illuminating the nascent reality set to revolutionize digital interactions. Our analysis emphasizes the importance of collaborative efforts in developing metaverse standards, thereby fostering a unified understanding among industry stakeholders, organizations, and regulatory bodies. We extend our scrutiny to critical technologies integral to the metaverse, including interactive experiences, communication technologies, ubiquitous computing, digital twins, artificial intelligence, and cybersecurity measures. For each technological domain, we rigorously assess current contributions, principal techniques, and representative use cases, providing a nuanced perspective on their potential impacts. Furthermore, we delve into the metaverse's diverse applications across education, healthcare, business, social interactions, industrial sectors, defense, and mission-critical operations, highlighting its extensive utility. Each application is thoroughly analyzed, demonstrating its value and addressing associated challenges. The survey concludes with an overview of persistent challenges and future directions, offering insights into essential considerations and strategies necessary to harness the full potential of the metaverse. Through this detailed investigation, our goal is to articulate the scientific contributions of this survey paper, transcending a mere structural overview to highlight the transformative implications of the metaverse.
Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions
Rauniyar, Ashish, Hagos, Desta Haileselassie, Jha, Debesh, Hรฅkegรฅrd, Jan Erik, Bagci, Ulas, Rawat, Danda B., Vlassov, Vladimir
With the advent of the IoT, AI, ML, and DL algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and quality of service (QoS) standards. Recent developments in \ac{FL} have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this paper, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unravelling the complexities of designing reliable and scalable \ac{FL} models. Our paper outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of \ac{FL}, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state-of-the-art and identifying open problems and future research directions.
Trustworthy Artificial Intelligence Framework for Proactive Detection and Risk Explanation of Cyber Attacks in Smart Grid
Munir, Md. Shirajum, Shetty, Sachin, Rawat, Danda B.
The rapid growth of distributed energy resources (DERs), such as renewable energy sources, generators, consumers, and prosumers in the smart grid infrastructure, poses significant cybersecurity and trust challenges to the grid controller. Consequently, it is crucial to identify adversarial tactics and measure the strength of the attacker's DER. To enable a trustworthy smart grid controller, this work investigates a trustworthy artificial intelligence (AI) mechanism for proactive identification and explanation of the cyber risk caused by the control/status message of DERs. Thus, proposing and developing a trustworthy AI framework to facilitate the deployment of any AI algorithms for detecting potential cyber threats and analyzing root causes based on Shapley value interpretation while dynamically quantifying the risk of an attack based on Ward's minimum variance formula. The experiment with a state-of-the-art dataset establishes the proposed framework as a trustworthy AI by fulfilling the capabilities of reliability, fairness, explainability, transparency, reproducibility, and accountability.
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Olowononi, Felix, Rawat, Danda B., Liu, Chunmei
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
Reinforcement Learning for IoT Security: A Comprehensive Survey
Uprety, Aashma, Rawat, Danda B.
The number of connected smart devices has been increasing exponentially for different Internet-of-Things (IoT) applications. Security has been a long run challenge in the IoT systems which has many attack vectors, security flaws and vulnerabilities. Securing billions of B connected devices in IoT is a must task to realize the full potential of IoT applications. Recently, researchers have proposed many security solutions for IoT. Machine learning has been proposed as one of the emerging solutions for IoT security and Reinforcement learning is gaining more popularity for securing IoT systems. Reinforcement learning, unlike other machine learning techniques, can learn the environment by having minimum information about the parameters to be learned. It solves the optimization problem by interacting with the environment adapting the parameters on the fly. In this paper, we present an comprehensive survey of different types of cyber-attacks against different IoT systems and then we present reinforcement learning and deep reinforcement learning based security solutions to combat those different types of attacks in different IoT systems. Furthermore, we present the Reinforcement learning for securing CPS systems (i.e., IoT with feedback and control) such as smart grid and smart transportation system. The recent important attacks and countermeasures using reinforcement learning B in IoT are also summarized in the form of tables. With this paper, readers can have a more thorough understanding of IoT security attacks and countermeasures using Reinforcement Learning, as well as research trends in this area.