Goto

Collaborating Authors

 Raviv, Dan


Synthetic Data Generation for 3D Myocardium Deformation Analysis

arXiv.org Artificial Intelligence

Accurate analysis of 3D myocardium deformation using high-resolution computerized tomography (CT) datasets with ground truth (GT) annotations is crucial for advancing cardiovascular imaging research. However, the scarcity of such datasets poses a significant challenge for developing robust myocardium deformation analysis models. To address this, we propose a novel approach to synthetic data generation for enriching cardiovascular imaging datasets. We introduce a synthetic data generation method, enriched with crucial GT 3D optical flow annotations. We outline the data preparation from a cardiac four-dimensional (4D) CT scan, selection of parameters, and the subsequent creation of synthetic data from the same or other sources of 3D cardiac CT data for training. Our work contributes to overcoming the limitations imposed by the scarcity of high-resolution CT datasets with precise annotations, thereby facilitating the development of accurate and reliable myocardium deformation analysis algorithms for clinical applications and diagnostics. Our code is available at: http://www.github.com/shaharzuler/cardio_volume_skewer


Cost Function Unrolling in Unsupervised Optical Flow

arXiv.org Artificial Intelligence

Steepest descent algorithms, which are commonly used in deep learning, use the gradient as the descent direction, either as-is or after a direction shift using preconditioning. In many scenarios calculating the gradient is numerically hard due to complex or non-differentiable cost functions, specifically next to singular points. In this work we focus on the derivation of the Total Variation semi-norm commonly used in unsupervised cost functions. Specifically, we derive a differentiable proxy to the hard L1 smoothness constraint in a novel iterative scheme which we refer to as Cost Unrolling. Producing more accurate gradients during training, our method enables finer predictions of a given DNN model through improved convergence, without modifying its architecture or increasing computational complexity. We demonstrate our method in the unsupervised optical flow task. Replacing the L1 smoothness constraint with our unrolled cost during the training of a well known baseline, we report improved results on both MPI Sintel and KITTI 2015 unsupervised optical flow benchmarks. Particularly, we report EPE reduced by up to 15.82% on occluded pixels, where the smoothness constraint is dominant, enabling the detection of much sharper motion edges.


Deep Weighted Consensus: Dense correspondence confidence maps for 3D shape registration

arXiv.org Artificial Intelligence

We present a new paradigm for rigid alignment between point clouds based on learnable weighted consensus which is robust to noise as well as the full spectrum of the rotation group. Current models, learnable or axiomatic, work well for constrained orientations and limited noise levels, usually by an end-to-end learner or an iterative scheme. However, real-world tasks require us to deal with large rotations as well as outliers and all known models fail to deliver. Here we present a different direction. We claim that we can align point clouds out of sampled matched points according to confidence level derived from a dense, soft alignment map. The pipeline is differentiable, and converges under large rotations in the full spectrum of SO(3), even with high noise levels. We compared the network to recently presented methods such as DCP, PointNetLK, RPM-Net, PRnet, and axiomatic methods such as ICP and Go-ICP. We report here a fundamental boost in performance.


OCR Graph Features for Manipulation Detection in Documents

arXiv.org Artificial Intelligence

Detecting manipulations in digital documents is becoming increasingly important for information verification purposes. Due to the proliferation of image editing software, altering key information in documents has become widely accessible. Nearly all approaches in this domain rely on a procedural approach, using carefully generated features and a hand-tuned scoring system, rather than a data-driven and generalizable approach. We frame this issue as a graph comparison problem using the character bounding boxes, and propose a model that leverages graph features using OCR (Optical Character Recognition). Our model relies on a data-driven approach to detect alterations by training a random forest classifier on the graph-based OCR features. We evaluate our algorithm's forgery detection performance on dataset constructed from real business documents with slight forgery imperfections. Our proposed model dramatically outperforms the most closely-related document manipulation detection model on this task.


Printing and Scanning Attack for Image Counter Forensics

arXiv.org Machine Learning

Examining the authenticity of images has become increasingly important as manipulation tools become more accessible and advanced. Recent work has shown that while CNN-based image manipulation detectors can successfully identify manipulations, they are also vulnerable to adversarial attacks, ranging from simple double JPEG compression to advanced pixel-based perturbation. In this paper we explore another method of highly plausible attack: printing and scanning. We demonstrate the vulnerability of two state-of-the-art models to this type of attack. We also propose a new machine learning model that performs comparably to these state-of-the-art models when trained and validated on printed and scanned images. Of the three models, our proposed model outperforms the others when trained and validated on images from a single printer. To facilitate this exploration, we create a dataset of over 6,000 printed and scanned image blocks. Further analysis suggests that variation between images produced from different printers is significant, large enough that good validation accuracy on images from one printer does not imply similar validation accuracy on identical images from a different printer.