Ravishankar, Saiprasad
Learning Dynamics of Deep Linear Networks Beyond the Edge of Stability
Ghosh, Avrajit, Kwon, Soo Min, Wang, Rongrong, Ravishankar, Saiprasad, Qu, Qing
Deep neural networks trained using gradient descent with a fixed learning rate $\eta$ often operate in the regime of "edge of stability" (EOS), where the largest eigenvalue of the Hessian equilibrates about the stability threshold $2/\eta$. In this work, we present a fine-grained analysis of the learning dynamics of (deep) linear networks (DLNs) within the deep matrix factorization loss beyond EOS. For DLNs, loss oscillations beyond EOS follow a period-doubling route to chaos. We theoretically analyze the regime of the 2-period orbit and show that the loss oscillations occur within a small subspace, with the dimension of the subspace precisely characterized by the learning rate. The crux of our analysis lies in showing that the symmetry-induced conservation law for gradient flow, defined as the balancing gap among the singular values across layers, breaks at EOS and decays monotonically to zero. Overall, our results contribute to explaining two key phenomena in deep networks: (i) shallow models and simple tasks do not always exhibit EOS; and (ii) oscillations occur within top features. We present experiments to support our theory, along with examples demonstrating how these phenomena occur in nonlinear networks and how they differ from those which have benign landscape such as in DLNs.
Pruning Unrolled Networks (PUN) at Initialization for MRI Reconstruction Improves Generalization
Liang, Shijun, Bell, Evan, Ghosh, Avrajit, Ravishankar, Saiprasad
More recently, deep learning has garnered considerable attention in medical imaging and has demonstrated superior Deep learning methods are highly effective for many image performance in a variety of image reconstruction tasks including reconstruction tasks. However, the performance of supervised X-ray computed tomography [7], positron emission learned models can degrade when applied to distinct tomography [8], and MRI [9]. An important recent trend experimental settings at test time or in the presence of distribution in supervised deep learning for MRI is the development of shifts. In this study, we demonstrate that pruning unrolled networks. While common deep learning architectures deep image reconstruction networks at training time can improve such as U-Nets [10] and transformers [11] have been their robustness to distribution shifts. In particular, we highly successful in MR image reconstruction, they do not consider unrolled reconstruction architectures for accelerated directly incorporate knowledge of the forward model of the magnetic resonance imaging and introduce a method for pruning imaging system (i.e. the underlying physics) into the reconstruction unrolled networks (PUN) at initialization.
SITCOM: Step-wise Triple-Consistent Diffusion Sampling for Inverse Problems
Alkhouri, Ismail, Liang, Shijun, Huang, Cheng-Han, Dai, Jimmy, Qu, Qing, Ravishankar, Saiprasad, Wang, Rongrong
Diffusion models (DMs) are a class of generative models that allow sampling from a distribution learned over a training set. When applied to solving inverse imaging problems (IPs), the reverse sampling steps of DMs are typically modified to approximately sample from a measurement-conditioned distribution in the image space. However, these modifications may be unsuitable for certain settings (such as in the presence of measurement noise) and non-linear tasks, as they often struggle to correct errors from earlier sampling steps and generally require a large number of optimization and/or sampling steps. To address these challenges, we state three conditions for achieving measurement-consistent diffusion trajectories. Building on these conditions, we propose a new optimization-based sampling method that not only enforces the standard data manifold measurement consistency and forward diffusion consistency, as seen in previous studies, but also incorporates backward diffusion consistency that maintains a diffusion trajectory by optimizing over the input of the pre-trained model at every sampling step. By enforcing these conditions, either implicitly or explicitly, our sampler requires significantly fewer reverse steps. Therefore, we refer to our accelerated method as Step-wise Triple-Consistent Sampling (SITCOM). Compared to existing state-of-the-art baseline methods, under different levels of measurement noise, our extensive experiments across five linear and three non-linear image restoration tasks demonstrate that SITCOM achieves competitive or superior results in terms of standard image similarity metrics while requiring a significantly reduced run-time across all considered tasks.
Optimal Eye Surgeon: Finding Image Priors through Sparse Generators at Initialization
Ghosh, Avrajit, Zhang, Xitong, Sun, Kenneth K., Qu, Qing, Ravishankar, Saiprasad, Wang, Rongrong
We introduce Optimal Eye Surgeon (OES), a framework for pruning and training deep image generator networks. Typically, untrained deep convolutional networks, which include image sampling operations, serve as effective image priors (Ulyanov et al., 2018). However, they tend to overfit to noise in image restoration tasks due to being overparameterized. OES addresses this by adaptively pruning networks at random initialization to a level of underparameterization. This process effectively captures low-frequency image components even without training, by just masking. When trained to fit noisy images, these pruned subnetworks, which we term Sparse-DIP, resist overfitting to noise. This benefit arises from underparameterization and the regularization effect of masking, constraining them in the manifold of image priors. We demonstrate that subnetworks pruned through OES surpass other leading pruning methods, such as the Lottery Ticket Hypothesis, which is known to be suboptimal for image recovery tasks (Wu et al., 2023). Our extensive experiments demonstrate the transferability of OES-masks and the characteristics of sparse-subnetworks for image generation. Code is available at https://github.com/Avra98/Optimal-Eye-Surgeon.git.
Decoupled Data Consistency with Diffusion Purification for Image Restoration
Li, Xiang, Kwon, Soo Min, Alkhouri, Ismail R., Ravishankar, Saiprasad, Qu, Qing
Diffusion models have recently gained traction as a powerful class of deep generative priors, excelling in a wide range of image restoration tasks due to their exceptional ability to model data distributions. To solve image restoration problems, many existing techniques achieve data consistency by incorporating additional likelihood gradient steps into the reverse sampling process of diffusion models. However, the additional gradient steps pose a challenge for real-world practical applications as they incur a large computational overhead, thereby increasing inference time. They also present additional difficulties when using accelerated diffusion model samplers, as the number of data consistency steps is limited by the number of reverse sampling steps. In this work, we propose a novel diffusion-based image restoration solver that addresses these issues by decoupling the reverse process from the data consistency steps. Our method involves alternating between a reconstruction phase to maintain data consistency and a refinement phase that enforces the prior via diffusion purification. Our approach demonstrates versatility, making it highly adaptable for efficient problem-solving in latent space. Additionally, it reduces the necessity for numerous sampling steps through the integration of consistency models. The efficacy of our approach is validated through comprehensive experiments across various image restoration tasks, including image denoising, deblurring, inpainting, and super-resolution.
Adaptive Local Neighborhood-based Neural Networks for MR Image Reconstruction from Undersampled Data
Liang, Shijun, Lahiri, Anish, Ravishankar, Saiprasad
Recent medical image reconstruction techniques focus on generating high-quality medical images suitable for clinical use at the lowest possible cost and with the fewest possible adverse effects on patients. Recent works have shown significant promise for reconstructing MR images from sparsely sampled k-space data using deep learning. In this work, we propose a technique that rapidly estimates deep neural networks directly at reconstruction time by fitting them on small adaptively estimated neighborhoods of a training set. In brief, our algorithm alternates between searching for neighbors in a data set that are similar to the test reconstruction, and training a local network on these neighbors followed by updating the test reconstruction. Because our reconstruction model is learned on a dataset that is in some sense similar to the image being reconstructed rather than being fit on a large, diverse training set, it is more adaptive to new scans. It can also handle changes in training sets and flexible scan settings, while being relatively fast. Our approach, dubbed LONDN-MRI, was validated on multiple data sets using deep unrolled reconstruction networks. Reconstructions were performed at four fold and eight fold undersampling of k-space with 1D variable-density random phase-encode undersampling masks. Our results demonstrate that our proposed locally-trained method produces higher-quality reconstructions compared to models trained globally on larger datasets as well as other scan-adaptive methods.
Robust MRI Reconstruction by Smoothed Unrolling (SMUG)
Liang, Shijun, Nguyen, Van Hoang Minh, Jia, Jinghan, Alkhouri, Ismail, Liu, Sijia, Ravishankar, Saiprasad
As the popularity of deep learning (DL) in the field of magnetic resonance imaging (MRI) continues to rise, recent research has indicated that DL-based MRI reconstruction models might be excessively sensitive to minor input disturbances, including worst-case additive perturbations. This sensitivity often leads to unstable, aliased images. This raises the question of how to devise DL techniques for MRI reconstruction that can be robust to train-test variations. To address this problem, we propose a novel image reconstruction framework, termed Smoothed Unrolling (SMUG), which advances a deep unrolling-based MRI reconstruction model using a randomized smoothing (RS)-based robust learning approach. RS, which improves the tolerance of a model against input noises, has been widely used in the design of adversarial defense approaches for image classification tasks. Yet, we find that the conventional design that applies RS to the entire DL-based MRI model is ineffective. In this paper, we show that SMUG and its variants address the above issue by customizing the RS process based on the unrolling architecture of a DL-based MRI reconstruction model. Compared to the vanilla RS approach, we show that SMUG improves the robustness of MRI reconstruction with respect to a diverse set of instability sources, including worst-case and random noise perturbations to input measurements, varying measurement sampling rates, and different numbers of unrolling steps. Furthermore, we theoretically analyze the robustness of our method in the presence of perturbations.
Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and Unsupervised Learning
Chen, Ling, Huang, Zhishen, Long, Yong, Ravishankar, Saiprasad
Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple object priors. Recent application of deep learning methods for image reconstruction provides a successful data-driven approach to addressing the challenges when reconstructing images with undersampled measurements or various types of noise. In this work, we propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction. The proposed learning formulation leverages both sparsity or unsupervised learning-based priors and neural network reconstructors to simulate a fixed-point iteration process. Each proposed trained block consists of a deterministic MBIR solver and a neural network. The information flows in parallel through these two reconstructors and is then optimally combined. Multiple such blocks are cascaded to form a reconstruction pipeline. We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data, where we use the NIH AAPM Mayo Clinic Low Dose CT Grand Challenge dataset for training and testing. In our experiments, we study combinations of supervised deep network reconstructors and MBIR solver with learned sparse representation-based priors or analytical priors. Our results demonstrate the promising performance of the proposed framework compared to recent low-dose CT reconstruction methods.
Learning Sparsity-Promoting Regularizers using Bilevel Optimization
Ghosh, Avrajit, McCann, Michael T., Mitchell, Madeline, Ravishankar, Saiprasad
We present a method for supervised learning of sparsity-promoting regularizers for denoising signals and images. Sparsity-promoting regularization is a key ingredient in solving modern signal reconstruction problems; however, the operators underlying these regularizers are usually either designed by hand or learned from data in an unsupervised way. The recent success of supervised learning (mainly convolutional neural networks) in solving image reconstruction problems suggests that it could be a fruitful approach to designing regularizers. Towards this end, we propose to denoise signals using a variational formulation with a parametric, sparsity-promoting regularizer, where the parameters of the regularizer are learned to minimize the mean squared error of reconstructions on a training set of ground truth image and measurement pairs. Training involves solving a challenging bilievel optimization problem; we derive an expression for the gradient of the training loss using the closed-form solution of the denoising problem and provide an accompanying gradient descent algorithm to minimize it. Our experiments with structured 1D signals and natural images show that the proposed method can learn an operator that outperforms well-known regularizers (total variation, DCT-sparsity, and unsupervised dictionary learning) and collaborative filtering for denoising. While the approach we present is specific to denoising, we believe that it could be adapted to the larger class of inverse problems with linear measurement models, giving it applicability in a wide range of signal reconstruction settings.
SMUG: Towards robust MRI reconstruction by smoothed unrolling
Li, Hui, Jia, Jinghan, Liang, Shijun, Yao, Yuguang, Ravishankar, Saiprasad, Liu, Sijia
Although deep learning (DL) has gained much popularity for accelerated magnetic resonance imaging (MRI), recent studies have shown that DL-based MRI reconstruction models could be oversensitive to tiny input perturbations (that are called 'adversarial perturbations'), which cause unstable, low-quality reconstructed images. This raises the question of how to design robust DL methods for MRI reconstruction. To address this problem, we propose a novel image reconstruction framework, termed SMOOTHED UNROLLING (SMUG), which advances a deep unrolling-based MRI reconstruction model using a randomized smoothing (RS)-based robust learning operation. RS, which improves the tolerance of a model against input noises, has been widely used in the design of adversarial defense for image classification. Yet, we find that the conventional design that applies RS to the entire DL process is ineffective for MRI reconstruction. We show that SMUG addresses the above issue by customizing the RS operation based on the unrolling architecture of the DL-based MRI reconstruction model. Compared to the vanilla RS approach and several variants of SMUG, we show that SMUG improves the robustness of MRI reconstruction with respect to a diverse set of perturbation sources, including perturbations to the input measurements, different measurement sampling rates, and different unrolling steps. Code for SMUG will be available at https://github.com/LGM70/SMUG.