Ravikumar, Nishant
A Conditional Flow Variational Autoencoder for Controllable Synthesis of Virtual Populations of Anatomy
Dou, Haoran, Ravikumar, Nishant, Frangi, Alejandro F.
The generation of virtual populations (VPs) of anatomy is essential for conducting in silico trials of medical devices. Typically, the generated VP should capture sufficient variability while remaining plausible and should reflect the specific characteristics and demographics of the patients observed in real populations. In several applications, it is desirable to synthesise virtual populations in a \textit{controlled} manner, where relevant covariates are used to conditionally synthesise virtual populations that fit a specific target population/characteristics. We propose to equip a conditional variational autoencoder (cVAE) with normalising flows to boost the flexibility and complexity of the approximate posterior learnt, leading to enhanced flexibility for controllable synthesis of VPs of anatomical structures. We demonstrate the performance of our conditional flow VAE using a data set of cardiac left ventricles acquired from 2360 patients, with associated demographic information and clinical measurements (used as covariates/conditional information). The results obtained indicate the superiority of the proposed method for conditional synthesis of virtual populations of cardiac left ventricles relative to a cVAE. Conditional synthesis performance was evaluated in terms of generalisation and specificity errors and in terms of the ability to preserve clinically relevant biomarkers in synthesised VPs, that is, the left ventricular blood pool and myocardial volume, relative to the real observed population.
Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic Review
Breen, Jack, Allen, Katie, Zucker, Kieran, Adusumilli, Pratik, Scarsbrook, Andy, Hall, Geoff, Orsi, Nicolas M., Ravikumar, Nishant
Purpose - To characterise and assess the quality of published research evaluating artificial intelligence (AI) methods for ovarian cancer diagnosis or prognosis using histopathology data. Methods - A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted up to 19/05/2023. The inclusion criteria required that research evaluated AI on histopathology images for diagnostic or prognostic inferences in ovarian cancer. The risk of bias was assessed using PROBAST. Information about each model of interest was tabulated and summary statistics were reported. PRISMA 2020 reporting guidelines were followed. Results - 1573 records were identified, of which 45 were eligible for inclusion. There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes. Models were developed using 1-1375 slides from 1-776 ovarian cancer patients. Model outcomes included treatment response (11/80), malignancy status (10/80), stain quantity (9/80), and histological subtype (7/80). All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis and a lack of clarity regarding participants and predictors in the study. Research frequently suffered from insufficient reporting and limited validation using small sample sizes. Conclusion - Limited research has been conducted on the application of AI to histopathology images for diagnostic or prognostic purposes in ovarian cancer, and none of the associated models have been demonstrated to be ready for real-world implementation. Key aspects to help ensure clinical translation include more transparent and comprehensive reporting of data provenance and modelling approaches, as well as improved quantitative performance evaluation using cross-validation and external validations.
Implicit Visual Bias Mitigation by Posterior Estimate Sharpening of a Bayesian Neural Network
Stone, Rebecca S, Ravikumar, Nishant, Bulpitt, Andrew J, Hogg, David C
The fairness of a deep neural network is strongly affected by dataset bias and spurious correlations, both of which are usually present in modern feature-rich and complex visual datasets. Due to the difficulty and variability of the task, no single de-biasing method has been universally successful. In particular, implicit methods not requiring explicit knowledge of bias variables are especially relevant for real-world applications. We propose a novel implicit mitigation method using a Bayesian neural network, allowing us to leverage the relationship between epistemic uncertainties and the presence of bias or spurious correlations in a sample. Our proposed posterior estimate sharpening procedure encourages the network to focus on core features that do not contribute to high uncertainties. Experimental results on three benchmark datasets demonstrate that Bayesian networks with sharpened posterior estimates perform comparably to prior existing methods and show potential worthy of further exploration.
Learning disentangled representations for explainable chest X-ray classification using Dirichlet VAEs
Harkness, Rachael, Frangi, Alejandro F, Zucker, Kieran, Ravikumar, Nishant
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images. Our working hypothesis is that distributional sparsity, as facilitated by the Dirichlet prior, will encourage disentangled feature learning for the complex task of multi-label classification of CXR images. The DirVAE is trained using CXR images from the CheXpert database, and the predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task, with a view to enforce separation of latent factors according to class-specific features. The predictive performance and explainability of the latent space learned using the DirVAE were quantitatively and qualitatively assessed, respectively, and compared with a standard Gaussian prior-VAE (GVAE). We introduce a new approach for explainable multi-label classification in which we conduct gradient-guided latent traversals for each class of interest. Study findings indicate that the DirVAE is able to disentangle latent factors into class-specific visual features, a property not afforded by the GVAE, and achieve a marginal increase in predictive performance relative to GVAE. We generate visual examples to show that our explainability method, when applied to the trained DirVAE, is able to highlight regions in CXR images that are clinically relevant to the class(es) of interest and additionally, can identify cases where classification relies on spurious feature correlations.
Unsupervised ensemble-based phenotyping helps enhance the discoverability of genes related to heart morphology
Bonazzola, Rodrigo, Ferrante, Enzo, Ravikumar, Nishant, Xia, Yan, Keavney, Bernard, Plein, Sven, Syeda-Mahmood, Tanveer, Frangi, Alejandro F
Recent genome-wide association studies (GWAS) have been successful in identifying associations between genetic variants and simple cardiac parameters derived from cardiac magnetic resonance (CMR) images. However, the emergence of big databases including genetic data linked to CMR, facilitates investigation of more nuanced patterns of shape variability. Here, we propose a new framework for gene discovery entitled Unsupervised Phenotype Ensembles (UPE). UPE builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner, using deep learning models trained with different hyperparameters. These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations across the ensemble. We apply our approach to the UK Biobank database to extract left-ventricular (LV) geometric features from image-derived three-dimensional meshes. We demonstrate that our approach greatly improves the discoverability of genes influencing LV shape, identifying 11 loci with study-wide significance and 8 with suggestive significance. We argue that our approach would enable more extensive discovery of gene associations with image-derived phenotypes for other organs or image modalities.
Flip Learning: Erase to Segment
Huang, Yuhao, Yang, Xin, Zou, Yuxin, Chen, Chaoyu, Wang, Jian, Dou, Haoran, Ravikumar, Nishant, Frangi, Alejandro F, Zhou, Jianqiao, Ni, Dong
Nodule segmentation from breast ultrasound images is challenging yet essential for the diagnosis. Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation. Unlike existing weakly-supervised approaches, in this study, we propose a novel and general WSS framework called Flip Learning, which only needs the box annotation. Specifically, the target in the label box will be erased gradually to flip the classification tag, and the erased region will be considered as the segmentation result finally. Our contribution is three-fold. First, our proposed approach erases on superpixel level using a Multi-agent Reinforcement Learning framework to exploit the prior boundary knowledge and accelerate the learning process. Second, we design two rewards: classification score and intensity distribution reward, to avoid under- and over-segmentation, respectively. Third, we adopt a coarse-to-fine learning strategy to reduce the residual errors and improve the segmentation performance. Extensively validated on a large dataset, our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
Partially Conditioned Generative Adversarial Networks
Ibarrola, Francisco J., Ravikumar, Nishant, Frangi, Alejandro F.
Generative models are undoubtedly a hot topic in Artificial Intelligence, among which the most common type is Generative Adversarial Networks (GANs). These architectures let one synthesise artificial datasets by implicitly modelling the underlying probability distribution of a real-world training dataset. With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset. From a practical standpoint, however, one might desire to generate data conditioned on partial information. That is, only a subset of the ancillary conditioning variables might be of interest when synthesising data. In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy to deal with the ensuing problems. Experiments illustrating the value of the proposed approach in digit and face image synthesis under partial conditioning information are presented, showing that the proposed method can effectively outperform the standard approach under these circumstances.
A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
Xiong, Zhaohan, Xia, Qing, Hu, Zhiqiang, Huang, Ning, Bian, Cheng, Zheng, Yefeng, Vesal, Sulaiman, Ravikumar, Nishant, Maier, Andreas, Yang, Xin, Heng, Pheng-Ann, Ni, Dong, Li, Caizi, Tong, Qianqian, Si, Weixin, Puybareau, Elodie, Khoudli, Younes, Geraud, Thierry, Chen, Chen, Bai, Wenjia, Rueckert, Daniel, Xu, Lingchao, Zhuang, Xiahai, Luo, Xinzhe, Jia, Shuman, Sermesant, Maxime, Liu, Yashu, Wang, Kuanquan, Borra, Davide, Masci, Alessandro, Corsi, Cristiana, de Vente, Coen, Veta, Mitko, Karim, Rashed, Preetha, Chandrakanth Jayachandran, Engelhardt, Sandy, Qiao, Menyun, Wang, Yuanyuan, Tao, Qian, Nunez-Garcia, Marta, Camara, Oscar, Savioli, Nicolo, Lamata, Pablo, Zhao, Jichao
Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.
Dilated deeply supervised networks for hippocampus segmentation in MRI
Folle, Lukas, Vesal, Sulaiman, Ravikumar, Nishant, Maier, Andreas
Tissue loss in the hippocampi has been heavily correlated with the progression of Alzheimer's Disease (AD). The shape and structure of the hippocampus are important factors in terms of early AD diagnosis and prognosis by clinicians. However, manual segmentation of such subcortical structures in MR studies is a challenging and subjective task. In this paper, we investigate variants of the well known 3D U-Net, a type of convolution neural network (CNN) for semantic segmentation tasks. We propose an alternative form of the 3D U-Net, which uses dilated convolutions and deep supervision to incorporate multi-scale information into the model. The proposed method is evaluated on the task of hippocampus head and body segmentation in an MRI dataset, provided as part of the MICCAI 2018 segmentation decathlon challenge. The experimental results show that our approach outperforms other conventional methods in terms of different segmentation accuracy metrics.