Ravi Kumar
Improving Online Algorithms via ML Predictions
Manish Purohit, Zoya Svitkina, Ravi Kumar
In this work we study the problem of using machine-learned predictions to improve the performance of online algorithms. We consider two classical problems, ski rental and non-clairvoyant job scheduling, and obtain new online algorithms that use predictions to make their decisions. These algorithms are oblivious to the performance of the predictor, improve with better predictions, but do not degrade much if the predictions are poor.
Mallows Models for Top-k Lists
Flavio Chierichetti, Anirban Dasgupta, Shahrzad Haddadan, Ravi Kumar, Silvio Lattanzi
The classic Mallows model is a widely-used tool to realize distributions on permutations. Motivated by common practical situations, in this paper, we generalize Mallows to model distributions on top-k lists by using a suitable distance measure between top-k lists. Unlike many earlier works, our model is both analytically tractable and computationally efficient. We demonstrate this by studying two basic problems in this model, namely, sampling and reconstruction, from both algorithmic and experimental points of view.
Fair Clustering Through Fairlets
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii
We study the question of fair clustering under the disparate impact doctrine, where each protected class must have approximately equal representation in every cluster. We formulate the fair clustering problem under both the k-center and the k-median objectives, and show that even with two protected classes the problem is challenging, as the optimum solution can violate common conventions--for instance a point may no longer be assigned to its nearest cluster center! En route we introduce the concept of fairlets, which are minimal sets that satisfy fair representation while approximately preserving the clustering objective. We show that any fair clustering problem can be decomposed into first finding good fairlets, and then using existing machinery for traditional clustering algorithms. While finding good fairlets can be NP-hard, we proceed to obtain efficient approximation algorithms based on minimum cost flow. We empirically demonstrate the price of fairness by quantifying the value of fair clustering on real-world datasets with sensitive attributes.