Ratnikov, Fedor
Optimisation of the Accelerator Control by Reinforcement Learning: A Simulation-Based Approach
Ibrahim, Anwar, Derkach, Denis, Petrenko, Alexey, Ratnikov, Fedor, Kaledin, Maxim
Optimizing accelerator control is a critical challenge in experimental particle physics, requiring significant manual effort and resource expenditure. Traditional tuning methods are often time-consuming and reliant on expert input, highlighting the need for more efficient approaches. This study aims to create a simulation-based framework integrated with Reinforcement Learning (RL) to address these challenges. Using \texttt{Elegant} as the simulation backend, we developed a Python wrapper that simplifies the interaction between RL algorithms and accelerator simulations, enabling seamless input management, simulation execution, and output analysis. The proposed RL framework acts as a co-pilot for physicists, offering intelligent suggestions to enhance beamline performance, reduce tuning time, and improve operational efficiency. As a proof of concept, we demonstrate the application of our RL approach to an accelerator control problem and highlight the improvements in efficiency and performance achieved through our methodology. We discuss how the integration of simulation tools with a Python-based RL framework provides a powerful resource for the accelerator physics community, showcasing the potential of machine learning in optimizing complex physical systems.
What Machine Learning Can Do for Focusing Aerogel Detectors
Shipilov, Foma, Barnyakov, Alexander, Bobrovnikov, Vladimir, Kononov, Sergey, Ratnikov, Fedor
Particle identification at the Super Charm-Tau factory experiment will be provided by a Focusing Aerogel Ring Imaging CHerenkov detector (FARICH). The specifics of detector location make proper cooling difficult, therefore a significant number of ambient background hits are captured. They must be mitigated to reduce the data flow and improve particle velocity resolution. In this work we present several approaches to filtering signal hits, inspired by machine learning techniques from computer vision.
Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach
Gavrikov, Arsenii, Malyshkin, Yury, Ratnikov, Fedor
Large-scale detectors consisting of a liquid scintillator target surrounded by an array of photo-multiplier tubes (PMTs) are widely used in the modern neutrino experiments: Borexino, KamLAND, Daya Bay, Double Chooz, RENO, and the upcoming JUNO with its satellite detector TAO. Such apparatuses are able to measure neutrino energy which can be derived from the amount of light and its spatial and temporal distribution over PMT channels. However, achieving a fine energy resolution in large-scale detectors is challenging. In this work, we present machine learning methods for energy reconstruction in the JUNO detector, the most advanced of its type. We focus on positron events in the energy range of 0-10 MeV which corresponds to the main signal in JUNO -- neutrinos originated from nuclear reactor cores and detected via the inverse beta decay channel. We consider the following models: Boosted Decision Trees and Fully Connected Deep Neural Network, trained on aggregated features, calculated using the information collected by PMTs. We describe the details of our feature engineering procedure and show that machine learning models can provide the energy resolution $\sigma = 3\%$ at 1 MeV using subsets of engineered features. The dataset for model training and testing is generated by the Monte Carlo method with the official JUNO software.
$(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
Borisyak, Maxim, Ryzhikov, Artem, Ustyuzhanin, Andrey, Derkach, Denis, Ratnikov, Fedor, Mineeva, Olga
Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.