Goto

Collaborating Authors

 Rastrow, Ariya


CA-SSLR: Condition-Aware Self-Supervised Learning Representation for Generalized Speech Processing

arXiv.org Artificial Intelligence

We introduce Condition-Aware Self-Supervised Learning Representation (CA-SSLR), a generalist conditioning model broadly applicable to various speech-processing tasks. Compared to standard fine-tuning methods that optimize for downstream models, CA-SSLR integrates language and speaker embeddings from earlier layers, making the SSL model aware of the current language and speaker context. This approach reduces the reliance on input audio features while preserving the integrity of the base SSLR. CA-SSLR improves the model's capabilities and demonstrates its generality on unseen tasks with minimal task-specific tuning. Our method employs linear modulation to dynamically adjust internal representations, enabling fine-grained adaptability without significantly altering the original model behavior. Experiments show that CA-SSLR reduces the number of trainable parameters, mitigates overfitting, and excels in under-resourced and unseen tasks. Specifically, CA-SSLR achieves a 10% relative reduction in LID errors, a 37% improvement in ASR CER on the ML-SUPERB benchmark, and a 27% decrease in SV EER on VoxCeleb-1, demonstrating its effectiveness.


Speech Recognition Rescoring with Large Speech-Text Foundation Models

arXiv.org Artificial Intelligence

Large language models (LLM) have demonstrated the ability to understand human language by leveraging large amount of text data. Automatic speech recognition (ASR) systems are often limited by available transcribed speech data and benefit from a second pass rescoring using LLM. Recently multi-modal large language models, particularly speech and text foundational models have demonstrated strong spoken language understanding. Speech-Text foundational models leverage large amounts of unlabelled and labelled data both in speech and text modalities to model human language. In this work, we propose novel techniques to use multi-modal LLM for ASR rescoring. We also explore discriminative training to further improve the foundational model rescoring performance. We demonstrate cross-modal knowledge transfer in speech-text LLM can benefit rescoring. Our experiments demonstrate up-to 20% relative improvements over Whisper large ASR and up-to 15% relative improvements over text-only LLM.


Towards ASR Robust Spoken Language Understanding Through In-Context Learning With Word Confusion Networks

arXiv.org Artificial Intelligence

In the realm of spoken language understanding (SLU), numerous natural language understanding (NLU) methodologies have been adapted by supplying large language models (LLMs) with transcribed speech instead of conventional written text. In real-world scenarios, prior to input into an LLM, an automated speech recognition (ASR) system generates an output transcript hypothesis, where inherent errors can degrade subsequent SLU tasks. Here we introduce a method that utilizes the ASR system's lattice output instead of relying solely on the top hypothesis, aiming to encapsulate speech ambiguities and enhance SLU outcomes. Our in-context learning experiments, covering spoken question answering and intent classification, underline the LLM's resilience to noisy speech transcripts with the help of word confusion networks from lattices, bridging the SLU performance gap between using the top ASR hypothesis and an oracle upper bound. Additionally, we delve into the LLM's robustness to varying ASR performance conditions and scrutinize the aspects of in-context learning which prove the most influential.


Task Oriented Dialogue as a Catalyst for Self-Supervised Automatic Speech Recognition

arXiv.org Artificial Intelligence

While word error rates of automatic speech recognition (ASR) systems have consistently fallen, natural language understanding (NLU) applications built on top of ASR systems still attribute significant numbers of failures to low-quality speech recognition results. Existing assistant systems collect large numbers of these unsuccessful interactions, but these systems usually fail to learn from these interactions, even in an offline fashion. In this work, we introduce CLC: Contrastive Learning for Conversations, a family of methods for contrastive fine-tuning of models in a self-supervised fashion, making use of easily detectable artifacts in unsuccessful conversations with assistants. We demonstrate that our CLC family of approaches can improve the performance of ASR models on OD3, a new public large-scale semi-synthetic meta-dataset of audio task-oriented dialogues, by up to 19.2%. These gains transfer to real-world systems as well, where we show that CLC can help to improve performance by up to 6.7% over baselines. We make OD3 publicly available at https://github.com/amazon-science/amazon-od3 .


Federated Representation Learning for Automatic Speech Recognition

arXiv.org Artificial Intelligence

Federated Learning (FL) is a privacy-preserving paradigm, allowing edge devices to learn collaboratively without sharing data. Edge devices like Alexa and Siri are prospective sources of unlabeled audio data that can be tapped to learn robust audio representations. In this work, we bring Self-supervised Learning (SSL) and FL together to learn representations for Automatic Speech Recognition respecting data privacy constraints. We use the speaker and chapter information in the unlabeled speech dataset, Libri-Light, to simulate non-IID speaker-siloed data distributions and pre-train an LSTM encoder with the Contrastive Predictive Coding framework with FedSGD. We show that the pre-trained ASR encoder in FL performs as well as a centrally pre-trained model and produces an improvement of 12-15% (WER) compared to no pre-training. We further adapt the federated pre-trained models to a new language, French, and show a 20% (WER) improvement over no pre-training.


Personalization for BERT-based Discriminative Speech Recognition Rescoring

arXiv.org Artificial Intelligence

Recognition of personalized content remains a challenge in end-to-end speech recognition. We explore three novel approaches that use personalized content in a neural rescoring step to improve recognition: gazetteers, prompting, and a cross-attention based encoder-decoder model. We use internal de-identified en-US data from interactions with a virtual voice assistant supplemented with personalized named entities to compare these approaches. On a test set with personalized named entities, we show that each of these approaches improves word error rate by over 10%, against a neural rescoring baseline. We also show that on this test set, natural language prompts can improve word error rate by 7% without any training and with a marginal loss in generalization. Overall, gazetteers were found to perform the best with a 10% improvement in word error rate (WER), while also improving WER on a general test set by 1%.


Streaming Speech-to-Confusion Network Speech Recognition

arXiv.org Artificial Intelligence

In interactive automatic speech recognition (ASR) systems, low-latency requirements limit the amount of search space that can be explored during decoding, particularly in end-to-end neural ASR. In this paper, we present a novel streaming ASR architecture that outputs a confusion network while maintaining limited latency, as needed for interactive applications. We show that 1-best results of our model are on par with a comparable RNN-T system, while the richer hypothesis set allows second-pass rescoring to achieve 10-20\% lower word error rate on the LibriSpeech task. We also show that our model outperforms a strong RNN-T baseline on a far-field voice assistant task.


Personalized Predictive ASR for Latency Reduction in Voice Assistants

arXiv.org Artificial Intelligence

Streaming Automatic Speech Recognition (ASR) in voice assistants can utilize prefetching to partially hide the latency of response generation. Prefetching involves passing a preliminary ASR hypothesis to downstream systems in order to prefetch and cache a response. If the final ASR hypothesis after endpoint detection matches the preliminary one, the cached response can be delivered to the user, thus saving latency. In this paper, we extend this idea by introducing predictive automatic speech recognition, where we predict the full utterance from a partially observed utterance, and prefetch the response based on the predicted utterance. We introduce two personalization approaches and investigate the tradeoff between potential latency gains from successful predictions and the cost increase from failed predictions. We evaluate our methods on an internal voice assistant dataset as well as the public SLURP dataset.


Accelerator-Aware Training for Transducer-Based Speech Recognition

arXiv.org Artificial Intelligence

Machine learning model weights and activations are represented in full-precision during training. This leads to performance degradation in runtime when deployed on neural network accelerator (NNA) chips, which leverage highly parallelized fixed-point arithmetic to improve runtime memory and latency. In this work, we replicate the NNA operators during the training phase, accounting for the degradation due to low-precision inference on the NNA in back-propagation. Our proposed method efficiently emulates NNA operations, thus foregoing the need to transfer quantization error-prone data to the Central Processing Unit (CPU), ultimately reducing the user perceived latency (UPL). We apply our approach to Recurrent Neural Network-Transducer (RNN-T), an attractive architecture for on-device streaming speech recognition tasks. We train and evaluate models on 270K hours of English data and show a 5-7% improvement in engine latency while saving up to 10% relative degradation in WER.


Dual-Attention Neural Transducers for Efficient Wake Word Spotting in Speech Recognition

arXiv.org Artificial Intelligence

We present dual-attention neural biasing, an architecture designed to boost Wake Words (WW) recognition and improve inference time latency on speech recognition tasks. This architecture enables a dynamic switch for its runtime compute paths by exploiting WW spotting to select which branch of its attention networks to execute for an input audio frame. With this approach, we effectively improve WW spotting accuracy while saving runtime compute cost as defined by floating point operations (FLOPs). Using an in-house de-identified dataset, we demonstrate that the proposed dual-attention network can reduce the compute cost by $90\%$ for WW audio frames, with only $1\%$ increase in the number of parameters. This architecture improves WW F1 score by $16\%$ relative and improves generic rare word error rate by $3\%$ relative compared to the baselines.