Rashidi, Parisa
Federated learning model for predicting major postoperative complications
Park, Yonggi, Ren, Yuanfang, Shickel, Benjamin, Guan, Ziyuan, Patela, Ayush, Ma, Yingbo, Hu, Zhenhong, Loftus, Tyler J., Rashidi, Parisa, Ozrazgat-Baslanti, Tezcan, Bihorac, Azra
Background: The accurate prediction of postoperative complication risk using Electronic Health Records (EHR) and artificial intelligence shows great potential. Training a robust artificial intelligence model typically requires large-scale and diverse datasets. In reality, collecting medical data often encounters challenges surrounding privacy protection. Methods: This retrospective cohort study includes adult patients who were admitted to UFH Gainesville (GNV) (n = 79,850) and Jacksonville (JAX) (n = 28,636) for any type of inpatient surgical procedure. Using perioperative and intraoperative features, we developed federated learning models to predict nine major postoperative complications (i.e., prolonged intensive care unit stay and mechanical ventilation). We compared federated learning models with local learning models trained on a single site and central learning models trained on pooled dataset from two centers. Results: Our federated learning models achieved the area under the receiver operating characteristics curve (AUROC) values ranged from 0.81 for wound complications to 0.92 for prolonged ICU stay at UFH GNV center. At UFH JAX center, these values ranged from 0.73-0.74 for wound complications to 0.92-0.93 for hospital mortality. Federated learning models achieved comparable AUROC performance to central learning models, except for prolonged ICU stay, where the performance of federated learning models was slightly higher than central learning models at UFH GNV center, but slightly lower at UFH JAX center. In addition, our federated learning model obtained comparable performance to the best local learning model at each center, demonstrating strong generalizability. Conclusion: Federated learning is shown to be a useful tool to train robust and generalizable models from large scale data across multiple institutions where data protection barriers are high.
Recent Advances, Applications, and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2023 Symposium
Jeong, Hyewon, Jabbour, Sarah, Yang, Yuzhe, Thapta, Rahul, Mozannar, Hussein, Han, William Jongwon, Mehandru, Nikita, Wornow, Michael, Lialin, Vladislav, Liu, Xin, Lozano, Alejandro, Zhu, Jiacheng, Kocielnik, Rafal Dariusz, Harrigian, Keith, Zhang, Haoran, Lee, Edward, Vukadinovic, Milos, Balagopalan, Aparna, Jeanselme, Vincent, Matton, Katherine, Demirel, Ilker, Fries, Jason, Rashidi, Parisa, Beaulieu-Jones, Brett, Xu, Xuhai Orson, McDermott, Matthew, Naumann, Tristan, Agrawal, Monica, Zitnik, Marinka, Ustun, Berk, Choi, Edward, Yeom, Kristen, Gursoy, Gamze, Ghassemi, Marzyeh, Pierson, Emma, Chen, George, Kanjilal, Sanjat, Oberst, Michael, Zhang, Linying, Singh, Harvineet, Hartvigsen, Tom, Zhou, Helen, Okolo, Chinasa T.
The third ML4H symposium was held in person on December 10, 2023, in New Orleans, Louisiana, USA. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the \ac{ML4H} community. Encouraged by the successful virtual roundtables in the previous year, we organized eleven in-person roundtables and four virtual roundtables at ML4H 2022. The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables. Each roundtable session included invited senior chairs (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with interest in the session's topic. Herein we detail the organization process and compile takeaways from these roundtable discussions, including recent advances, applications, and open challenges for each topic. We conclude with a summary and lessons learned across all roundtables. This document serves as a comprehensive review paper, summarizing the recent advancements in machine learning for healthcare as contributed by foremost researchers in the field.
Temporal Cross-Attention for Dynamic Embedding and Tokenization of Multimodal Electronic Health Records
Ma, Yingbo, Kolla, Suraj, Kaliraman, Dhruv, Nolan, Victoria, Hu, Zhenhong, Guan, Ziyuan, Ren, Yuanfang, Armfield, Brooke, Ozrazgat-Baslanti, Tezcan, Loftus, Tyler J., Rashidi, Parisa, Bihorac, Azra, Shickel, Benjamin
The breadth, scale, and temporal granularity of modern electronic health records (EHR) systems offers great potential for estimating personalized and contextual patient health trajectories using sequential deep learning. However, learning useful representations of EHR data is challenging due to its high dimensionality, sparsity, multimodality, irregular and variable-specific recording frequency, and timestamp duplication when multiple measurements are recorded simultaneously. Although recent efforts to fuse structured EHR and unstructured clinical notes suggest the potential for more accurate prediction of clinical outcomes, less focus has been placed on EHR embedding approaches that directly address temporal EHR challenges by learning time-aware representations from multimodal patient time series. In this paper, we introduce a dynamic embedding and tokenization framework for precise representation of multimodal clinical time series that combines novel methods for encoding time and sequential position with temporal cross-attention. Our embedding and tokenization framework, when integrated into a multitask transformer classifier with sliding window attention, outperformed baseline approaches on the exemplar task of predicting the occurrence of nine postoperative complications of more than 120,000 major inpatient surgeries using multimodal data from three hospitals and two academic health centers in the United States.
A multi-cohort study on prediction of acute brain dysfunction states using selective state space models
Silva, Brandon, Contreras, Miguel, Bandyopadhyay, Sabyasachi, Ren, Yuanfang, Guan, Ziyuan, Balch, Jeremy, Khezeli, Kia, Baslanti, Tezcan Ozrazgat, Shickel, Ben, Bihorac, Azra, Rashidi, Parisa
Assessing acute brain dysfunction (ABD), including delirium and coma in the intensive care unit (ICU), is a critical challenge due to its prevalence and severe implications for patient outcomes. Current diagnostic methods rely on infrequent clinical observations, which can only determine a patient's ABD status after onset. Our research attempts to solve these problems by harnessing Electronic Health Records (EHR) data to develop automated methods for ABD prediction for patients in the ICU. Existing models solely predict a single state (e.g., either delirium or coma), require at least 24 hours of observation data to make predictions, do not dynamically predict fluctuating ABD conditions during ICU stay (typically a one-time prediction), and use small sample size, proprietary single-hospital datasets. Our research fills these gaps in the existing literature by dynamically predicting delirium, coma, and mortality for 12-hour intervals throughout an ICU stay and validating on two public datasets. Our research also introduces the concept of dynamically predicting critical transitions from non-ABD to ABD and between different ABD states in real time, which could be clinically more informative for the hospital staff. We compared the predictive performance of two state-of-the-art neural network models, the MAMBA selective state space model and the Longformer Transformer model. Using the MAMBA model, we achieved a mean area under the receiving operator characteristic curve (AUROC) of 0.95 on outcome prediction of ABD for 12-hour intervals. The model achieves a mean AUROC of 0.79 when predicting transitions between ABD states. Our study uses a curated dataset from the University of Florida Health Shands Hospital for internal validation and two publicly available datasets, MIMIC-IV and eICU, for external validation, demonstrating robustness across ICU stays from 203 hospitals and 140,945 patients.
Acute kidney injury prediction for non-critical care patients: a retrospective external and internal validation study
Adiyeke, Esra, Ren, Yuanfang, Shickel, Benjamin, Ruppert, Matthew M., Guan, Ziyuan, Kane-Gill, Sandra L., Murugan, Raghavan, Amatullah, Nabihah, Stottlemyer, Britney A., Tran, Tiffany L., Ricketts, Dan, Horvat, Christopher M, Rashidi, Parisa, Bihorac, Azra, Ozrazgat-Baslanti, Tezcan
Background: Acute kidney injury (AKI), the decline of kidney excretory function, occurs in up to 18% of hospitalized admissions. Progression of AKI may lead to irreversible kidney damage. Methods: This retrospective cohort study includes adult patients admitted to a non-intensive care unit at the University of Pittsburgh Medical Center (UPMC) (n = 46,815) and University of Florida Health (UFH) (n = 127,202). We developed and compared deep learning and conventional machine learning models to predict progression to Stage 2 or higher AKI within the next 48 hours. We trained local models for each site (UFH Model trained on UFH, UPMC Model trained on UPMC) and a separate model with a development cohort of patients from both sites (UFH-UPMC Model). We internally and externally validated the models on each site and performed subgroup analyses across sex and race. Results: Stage 2 or higher AKI occurred in 3% (n=3,257) and 8% (n=2,296) of UFH and UPMC patients, respectively. Area under the receiver operating curve values (AUROC) for the UFH test cohort ranged between 0.77 (UPMC Model) and 0.81 (UFH Model), while AUROC values ranged between 0.79 (UFH Model) and 0.83 (UPMC Model) for the UPMC test cohort. UFH-UPMC Model achieved an AUROC of 0.81 (95% confidence interval [CI] [0.80, 0.83]) for UFH and 0.82 (95% CI [0.81,0.84]) for UPMC test cohorts; an area under the precision recall curve values (AUPRC) of 0.6 (95% CI, [0.05, 0.06]) for UFH and 0.13 (95% CI, [0.11,0.15]) for UPMC test cohorts. Kinetic estimated glomerular filtration rate, nephrotoxic drug burden and blood urea nitrogen remained the top three features with the highest influence across the models and health centers. Conclusion: Locally developed models displayed marginally reduced discrimination when tested on another institution, while the top set of influencing features remained the same across the models and sites.
XTSFormer: Cross-Temporal-Scale Transformer for Irregular Time Event Prediction
Xiao, Tingsong, Xu, Zelin, He, Wenchong, Su, Jim, Zhang, Yupu, Opoku, Raymond, Ison, Ronald, Petho, Jason, Bian, Jiang, Tighe, Patrick, Rashidi, Parisa, Jiang, Zhe
Event prediction aims to forecast the time and type of a future event based on a historical event sequence. Despite its significance, several challenges exist, including the irregularity of time intervals between consecutive events, the existence of cycles, periodicity, and multi-scale event interactions, as well as the high computational costs for long event sequences. Existing neural temporal point processes (TPPs) methods do not capture the multi-scale nature of event interactions, which is common in many real-world applications such as clinical event data. To address these issues, we propose the cross-temporal-scale transformer (XTSFormer), designed specifically for irregularly timed event data. Our model comprises two vital components: a novel Feature-based Cycle-aware Time Positional Encoding (FCPE) that adeptly captures the cyclical nature of time, and a hierarchical multi-scale temporal attention mechanism. These scales are determined by a bottom-up clustering algorithm. Extensive experiments on several real-world datasets show that our XTSFormer outperforms several baseline methods in prediction performance.
Evaluation of General Large Language Models in Contextually Assessing Semantic Concepts Extracted from Adult Critical Care Electronic Health Record Notes
Liu, Darren, Ding, Cheng, Bold, Delgersuren, Bouvier, Monique, Lu, Jiaying, Shickel, Benjamin, Jabaley, Craig S., Zhang, Wenhui, Park, Soojin, Young, Michael J., Wainwright, Mark S., Clermont, Gilles, Rashidi, Parisa, Rosenthal, Eric S., Dimisko, Laurie, Xiao, Ran, Yoon, Joo Heung, Yang, Carl, Hu, Xiao
The field of healthcare has increasingly turned its focus towards Large Language Models (LLMs) due to their remarkable performance. However, their performance in actual clinical applications has been underexplored. Traditional evaluations based on question-answering tasks don't fully capture the nuanced contexts. This gap highlights the need for more in-depth and practical assessments of LLMs in real-world healthcare settings. Objective: We sought to evaluate the performance of LLMs in the complex clinical context of adult critical care medicine using systematic and comprehensible analytic methods, including clinician annotation and adjudication. Methods: We investigated the performance of three general LLMs in understanding and processing real-world clinical notes. Concepts from 150 clinical notes were identified by MetaMap and then labeled by 9 clinicians. Each LLM's proficiency was evaluated by identifying the temporality and negation of these concepts using different prompts for an in-depth analysis. Results: GPT-4 showed overall superior performance compared to other LLMs. In contrast, both GPT-3.5 and text-davinci-003 exhibit enhanced performance when the appropriate prompting strategies are employed. The GPT family models have demonstrated considerable efficiency, evidenced by their cost-effectiveness and time-saving capabilities. Conclusion: A comprehensive qualitative performance evaluation framework for LLMs is developed and operationalized. This framework goes beyond singular performance aspects. With expert annotations, this methodology not only validates LLMs' capabilities in processing complex medical data but also establishes a benchmark for future LLM evaluations across specialized domains.
APRICOT: Acuity Prediction in Intensive Care Unit (ICU): Predicting Stability, Transitions, and Life-Sustaining Therapies
Contreras, Miguel, Silva, Brandon, Shickel, Benjamin, Baslanti, Tezcan Ozrazgat, Ren, Yuanfang, Guan, Ziyuan, Bandyopadhyay, Sabyasachi, Khezeli, Kia, Bihorac, Azra, Rashidi, Parisa
The acuity state of patients in the intensive care unit (ICU) can quickly change from stable to unstable, sometimes leading to life-threatening conditions. Early detection of deteriorating conditions can result in providing more timely interventions and improved survival rates. Current approaches rely on manual daily assessments. Some data-driven approaches have been developed, that use mortality as a proxy of acuity in the ICU. However, these methods do not integrate acuity states to determine the stability of a patient or the need for life-sustaining therapies. In this study, we propose APRICOT (Acuity Prediction in Intensive Care Unit), a Transformer-based neural network to predict acuity state in real-time in ICU patients. We develop and extensively validate externally, temporally, and prospectively the APRICOT model on three large datasets: University of Florida Health (UFH), eICU Collaborative Research Database (eICU), and Medical Information Mart for Intensive Care (MIMIC)-IV. The performance of APRICOT shows comparable results to state-of-the-art mortality prediction models (external AUROC 0.93-0.93, temporal AUROC 0.96-0.98, and prospective AUROC 0.98) as well as acuity prediction models (external AUROC 0.80-0.81, temporal AUROC 0.77-0.78, and prospective AUROC 0.87). Furthermore, APRICOT can make predictions for the need for life-sustaining therapies, showing comparable results to state-of-the-art ventilation prediction models (external AUROC 0.80-0.81, temporal AUROC 0.87-0.88, and prospective AUROC 0.85), and vasopressor prediction models (external AUROC 0.82-0.83, temporal AUROC 0.73-0.75, prospective AUROC 0.87). This tool allows for real-time acuity monitoring of a patient and can provide helpful information to clinicians to make timely interventions. Furthermore, the model can suggest life-sustaining therapies that the patient might need in the next hours in the ICU.
The Potential of Wearable Sensors for Assessing Patient Acuity in Intensive Care Unit (ICU)
Sena, Jessica, Mostafiz, Mohammad Tahsin, Zhang, Jiaqing, Davidson, Andrea, Bandyopadhyay, Sabyasachi, Yuanfang, Ren, Ozrazgat-Baslanti, Tezcan, Shickel, Benjamin, Loftus, Tyler, Schwartz, William Robson, Bihorac, Azra, Rashidi, Parisa
Acuity assessments are vital in critical care settings to provide timely interventions and fair resource allocation. Traditional acuity scores rely on manual assessments and documentation of physiological states, which can be time-consuming, intermittent, and difficult to use for healthcare providers. Furthermore, such scores do not incorporate granular information such as patients' mobility level, which can indicate recovery or deterioration in the ICU. We hypothesized that existing acuity scores could be potentially improved by employing Artificial Intelligence (AI) techniques in conjunction with Electronic Health Records (EHR) and wearable sensor data. In this study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for developing an AI-driven acuity assessment score. Accelerometry data were collected from 86 patients wearing accelerometers on their wrists in an academic hospital setting. The data was analyzed using five deep neural network models: VGG, ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These models outperformed a rule-based clinical score (SOFA= Sequential Organ Failure Assessment) used as a baseline, particularly regarding the precision, sensitivity, and F1 score. The results showed that while a model relying solely on accelerometer data achieved limited performance (AUC 0.50, Precision 0.61, and F1-score 0.68), including demographic information with the accelerometer data led to a notable enhancement in performance (AUC 0.69, Precision 0.75, and F1-score 0.67). This work shows that the combination of mobility and patient information can successfully differentiate between stable and unstable states in critically ill patients.
Detecting Visual Cues in the Intensive Care Unit and Association with Patient Clinical Status
Nerella, Subhash, Guan, Ziyuan, Davidson, Andrea, Ren, Yuanfang, Baslanti, Tezcan, Armfield, Brooke, Tighe, Patrick, Bihorac, Azra, Rashidi, Parisa
Intensive Care Units (ICU) provide close supervision and continuous care to patients with life-threatening conditions. However, continuous patient assessment in the ICU is still limited due to time constraints and the workload on healthcare providers. Existing patient assessments in the ICU such as pain or mobility assessment are mostly sporadic and administered manually, thus introducing the potential for human errors. Developing Artificial intelligence (AI) tools that can augment human assessments in the ICU can be beneficial for providing more objective and granular monitoring capabilities. For example, capturing the variations in a patient's facial cues related to pain or agitation can help in adjusting pain-related medications or detecting agitation-inducing conditions such as delirium. Additionally, subtle changes in visual cues during or prior to adverse clinical events could potentially aid in continuous patient monitoring when combined with high-resolution physiological signals and Electronic Health Record (EHR) data. In this paper, we examined the association between visual cues and patient condition including acuity status, acute brain dysfunction, and pain. We leveraged our AU-ICU dataset with 107,064 frames collected in the ICU annotated with facial action units (AUs) labels by trained annotators. We developed a new "masked loss computation" technique that addresses the data imbalance problem by maximizing data resource utilization. We trained the model using our AU-ICU dataset in conjunction with three external datasets to detect 18 AUs. The SWIN Transformer model achieved 0.57 mean F1-score and 0.89 mean accuracy on the test set. Additionally, we performed AU inference on 634,054 frames to evaluate the association between facial AUs and clinically important patient conditions such as acuity status, acute brain dysfunction, and pain.