Raschid, Louiqa
Does Geo-co-location Matter? A Case Study of Public Health Conversations during COVID-19
Xu, Paiheng, Raschid, Louiqa, Frias-Martinez, Vanessa
Social media platforms like Twitter (now X) have been pivotal in information dissemination and public engagement, especially during COVID-19. A key goal for public health experts was to encourage prosocial behavior that could impact local outcomes such as masking and social distancing. Given the importance of local news and guidance during COVID-19, the objective of our research is to analyze the effect of localized engagement, on social media conversations. This study examines the impact of geographic co-location, as a proxy for localized engagement between public health experts (PHEs) and the public, on social media. We analyze a Twitter conversation dataset from January 2020 to November 2021, comprising over 19 K tweets from nearly five hundred PHEs, along with approximately 800 K replies from 350 K participants. Our findings reveal that geo-co-location is associated with higher engagement rates, especially in conversations on topics including masking, lockdowns, and education, and in conversations with academic and medical professionals. Lexical features associated with emotion and personal experiences were more common in geo-co-located contexts. This research provides insights into how geographic co-location influences social media engagement and can inform strategies to improve public health messaging.
#EpiTwitter: Public Health Messaging During the COVID-19 Pandemic
Rao, Ashwin, Sabri, Nazanin, Guo, Siyi, Raschid, Louiqa, Lerman, Kristina
Effective communication during health crises is critical, with social media serving as a key platform for public health experts (PHEs) to engage with the public. However, it also amplifies pseudo-experts promoting contrarian views. Despite its importance, the role of emotional and moral language in PHEs' communication during COVID-19 remains under explored. This study examines how PHEs and pseudo-experts communicated on Twitter during the pandemic, focusing on emotional and moral language and their engagement with political elites. Analyzing tweets from 489 PHEs and 356 pseudo-experts from January 2020 to January 2021, alongside public responses, we identified key priorities and differences in messaging strategy. PHEs prioritize masking, healthcare, education, and vaccines, using positive emotional language like optimism. In contrast, pseudo-experts discuss therapeutics and lockdowns more frequently, employing negative emotions like pessimism and disgust. Negative emotional and moral language tends to drive engagement, but positive language from PHEs fosters positivity in public responses. PHEs exhibit liberal partisanship, expressing more positivity towards liberals and negativity towards conservative elites, while pseudo-experts show conservative partisanship. These findings shed light on the polarization of COVID-19 discourse and underscore the importance of strategic use of emotional and moral language by experts to mitigate polarization and enhance public trust.
Predicting the Behavior of Dealers in Over-The-Counter Corporate Bond Markets
Lin, Yusen, Xue, Jinming, Raschid, Louiqa
Trading in Over-The-Counter (OTC) markets is facilitated by broker-dealers, in comparison to public exchanges, e.g., the New York Stock Exchange (NYSE). Dealers play an important role in stabilizing prices and providing liquidity in OTC markets. We apply machine learning methods to model and predict the trading behavior of OTC dealers for US corporate bonds. We create sequences of daily historical transaction reports for each dealer over a vocabulary of US corporate bonds. Using this history of dealer activity, we predict the future trading decisions of the dealer. We consider a range of neural network-based prediction models. We propose an extension, the Pointwise-Product ReZero (PPRZ) Transformer model, and demonstrate the improved performance of our model. We show that individual history provides the best predictive model for the most active dealers. For less active dealers, a collective model provides improved performance. Further, clustering dealers based on their similarity can improve performance. Finally, prediction accuracy varies based on the activity level of both the bond and the dealer.
Predicting Author Blog Channels with High Value Future Posts for Monitoring
Wu, Shanchan (University of Maryland, College Park) | Elsayed, Tamer (King Abdullah University of Science and Technology (KAUST)) | Rand, William (University of Maryland, College Park) | Raschid, Louiqa (University of Maryland, College Park)
The phenomenal growth of social media, both in scale and importance, has created a unique opportunity to track information diffusion and the spread of influence, but can also make efficient tracking difficult. Given data streams representing blog posts on multiple blog channels and a focal query post on some topic of interest, our objective is to predict which of those channels are most likely to contain a future post that is relevant, or similar, to the focal query post. We denote this task as the future author prediction problem (FAPP). This problem has applications in information diffusion for brand monitoring and blog channel personalization and recommendation. We develop prediction methods inspired by (naive) information retrieval approaches that use historical posts in the blog channel for prediction. We also train a ranking support vector machine (SVM) to solve the problem. We evaluate our methods on an extensive social media dataset; despite the difficulty of the task, all methods perform reasonably well. Results show that ranking SVM prediction can exploit blog channel and diffusion characteristics to improve prediction accuracy. Moreover, it is surprisingly good for prediction in emerging topics and identifying inconsistent authors.