Goto

Collaborating Authors

 Rappazzo, Brendan


Phase Mapper: Accelerating Materials Discovery with AI

AI Magazine

From the stone age, to the bronze, iron age, and modern silicon age, the discovery and characterization of new materials has always been instrumental to humanity's progress and development. With the current pressing need to address sustainability challenges and find alternatives to fossil fuels, we look for solutions in the development of new materials that will allow for renewable energy. To discover materials with the required properties, materials scientists can perform high-throughput materials discovery, which includes rapid synthesis and characterization via X-ray diffraction (XRD) of thousands of materials. A central problem in materials discovery, the phase map identification problem, involves the determination of the crystal structure of materials from materials composition and structural characterization data. This analysis is traditionally performed mainly by hand, which can take days for a single material system. In this work we present Phase-Mapper, a solution platform that tightly integrates XRD experimentation, AI problem solving, and human intelligence for interpreting XRD patterns and inferring the crystal structures of the underlying materials. Phase-Mapper is compatible with any spectral demixing algorithm, including our novel solver, AgileFD, which is based on convolutive non-negative matrix factorization. AgileFD allows materials scientists to rapidly interpret XRD patterns, and incorporates constraints to capture prior knowledge about the physics of the materials as well as human feedback. With our system, materials scientists have been able to interpret previously unsolvable systems of XRD data at the Department of Energy’s Joint Center for Artificial Photosynthesis, including the Nb-Mn-V oxide system, which led to the discovery of new solar light absorbers and is provided as an illustrative example of AI-enabled high throughput materials discovery


Phase-Mapper: An AI Platform to Accelerate High Throughput Materials Discovery

AAAI Conferences

High-throughput materials discovery involves the rapid synthesis, measurement, and characterization of many different but structurally related materials. A central problem in materials discovery, the phase map identification problem, involves the determination of the crystal structure of materials from materials composition and structural characterization data. We present Phase-Mapper, a novel solution platform that allows humans to interact with both the data and products of AI algorithms, including the incorporation of human feedback to constrain or initialize solutions. Phase-Mapper is compatible with any spectral demixing algorithm, including our novel solver, AgileFD, which is based on convolutive non-negative matrix factorization. AgileFD allows materials scientists to rapidly interpret XRD patterns, and can incorporate constraints to capture the physics of the materials as well as human feedback. We compare three solver variants with previously proposed methods in a large-scale experiment involving 20 synthetic systems, demonstrating the efficacy of imposing physical constraints using AgileFD. Since the deployment of Phase-Mapper at the Department of Energy's Joint Center for Artificial Photosynthesis (JCAP), thousands of X-ray diffraction patterns have been processed and the results are yielding discovery of new materials for energy applications, as exemplified by the discovery of a new family of metal oxide solar light absorbers, among the previously unsolved Nb-Mn-V oxide system, which is provided here as an illustrative example. Phase-Mapper is also being deployed at the Stanford Synchrotron Radiation Lightsource (SSRL) to enable phase mapping on datasets in real time.