Goto

Collaborating Authors

 Rao, Supriya


Accelerating Transformer Inference and Training with 2:4 Activation Sparsity

arXiv.org Artificial Intelligence

In this paper, we demonstrate how to leverage 2:4 sparsity, a popular hardwareaccelerated GPU sparsity pattern, to activations to accelerate large language model training and inference. Crucially we exploit the intrinsic sparsity found in Squared-ReLU activations to provide this acceleration with no accuracy loss. Our approach achieves up to 1.3x faster Feed Forward Network (FFNs) in both the forwards and backwards pass. This work highlights the potential for sparsity to play a key role in accelerating large language model training and inference. The rapid growth of Large Language Models (LLMs) in recent years has been driven by a corresponding surge in GPU FLOPs.


NeurIPS 2023 LLM Efficiency Fine-tuning Competition

arXiv.org Artificial Intelligence

Our analysis of the NeurIPS 2023 large language model (LLM) fine-tuning competition revealed the following trend: top-performing models exhibit significant overfitting on benchmark datasets, mirroring the broader issue of benchmark overfitting on popular leaderboards and that data curation is essential in order to get a high performing LLM. The competition, which consisted of two stages - an open evaluation stage with publicly available tasks and a closed evaluation stage with unseen tasks - allowed us to assess the generalizability of fine-tuned LLMs. Our results highlight the limitations of current benchmark-based evaluation schemes for generative models and demonstrate the need for more robust evaluation methods. Notably, the winning submissions utilized standard open-source libraries and focused primarily on data curation. To facilitate further research and promote reproducibility, we release all competition entries, Docker files, and evaluation infrastructure, providing a valuable resource for the community to explore fine-tuning, overfitting, and reproducibility in LLMs..