Goto

Collaborating Authors

 Rao, Jinmeng


IM-RAG: Multi-Round Retrieval-Augmented Generation Through Learning Inner Monologues

arXiv.org Artificial Intelligence

Although the Retrieval-Augmented Generation (RAG) paradigms can use external knowledge to enhance and ground the outputs of Large Language Models (LLMs) to mitigate generative hallucinations and static knowledge base problems, they still suffer from limited flexibility in adopting Information Retrieval (IR) systems with varying capabilities, constrained interpretability during the multi-round retrieval process, and a lack of end-to-end optimization. To address these challenges, we propose a novel LLM-centric approach, IM-RAG, that integrates IR systems with LLMs to support multi-round RAG through learning Inner Monologues (IM, i.e., the human inner voice that narrates one's thoughts). During the IM process, the LLM serves as the core reasoning model (i.e., Reasoner) to either propose queries to collect more information via the Retriever or to provide a final answer based on the conversational context. We also introduce a Refiner that improves the outputs from the Retriever, effectively bridging the gap between the Reasoner and IR modules with varying capabilities and fostering multi-round communications. The entire IM process is optimized via Reinforcement Learning (RL) where a Progress Tracker is incorporated to provide mid-step rewards, and the answer prediction is further separately optimized via Supervised Fine-Tuning (SFT). We conduct extensive experiments with the HotPotQA dataset, a popular benchmark for retrieval-based, multi-step question-answering. The results show that our approach achieves state-of-the-art (SOTA) performance while providing high flexibility in integrating IR modules as well as strong interpretability exhibited in the learned inner monologues.


Best Practices and Lessons Learned on Synthetic Data for Language Models

arXiv.org Artificial Intelligence

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.


Higher Layers Need More LoRA Experts

arXiv.org Artificial Intelligence

Parameter-efficient tuning (PEFT) techniques like low-rank adaptation (LoRA) offer training efficiency on Large Language Models, but their impact on model performance remains limited. Recent efforts integrate LoRA and Mixture-of-Experts (MoE) to improve the performance of PEFT methods. Despite promising results, research on improving the efficiency of LoRA with MoE is still in its early stages. Recent studies have shown that experts in the MoE architecture have different strengths and also exhibit some redundancy. Does this statement also apply to parameter-efficient MoE? In this paper, we introduce a novel parameter-efficient MoE method, \textit{\textbf{M}oE-L\textbf{o}RA with \textbf{L}ayer-wise Expert \textbf{A}llocation (MoLA)} for Transformer-based models, where each model layer has the flexibility to employ a varying number of LoRA experts. We investigate several architectures with varying layer-wise expert configurations. Experiments on six well-known NLP and commonsense QA benchmarks demonstrate that MoLA achieves equal or superior performance compared to all baselines. We find that allocating more LoRA experts to higher layers further enhances the effectiveness of models with a certain number of experts in total. With much fewer parameters, this allocation strategy outperforms the setting with the same number of experts in every layer. This work can be widely used as a plug-and-play parameter-efficient tuning approach for various applications. The code is available at https://github.com/GCYZSL/MoLA.


Evaluation and Enhancement of Semantic Grounding in Large Vision-Language Models

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) offer remarkable benefits for a variety of vision-language tasks. However, a challenge hindering their application in real-world scenarios, particularly regarding safety, robustness, and reliability, is their constrained semantic grounding ability, which pertains to connecting language to the physical-world entities or concepts referenced in images. Therefore, a crucial need arises for a comprehensive study to assess the semantic grounding ability of widely used LVLMs. Despite the significance, sufficient investigation in this direction is currently lacking. Our work bridges this gap by designing a pipeline for generating large-scale evaluation datasets covering fine-grained semantic information, such as color, number, material, etc., along with a thorough assessment of seven popular LVLMs' semantic grounding ability. Results highlight prevalent misgrounding across various aspects and degrees. To address this issue, we propose a data-centric enhancement method that aims to improve LVLMs' semantic grounding ability through multimodal instruction tuning on fine-grained conversations. Experiments on enhanced LVLMs demonstrate notable improvements in addressing misgrounding issues.


Here Is Not There: Measuring Entailment-Based Trajectory Similarity for Location-Privacy Protection and Beyond

arXiv.org Artificial Intelligence

While the paths humans take play out in social as well as physical space, measures to describe and compare their trajectories are carried out in abstract, typically Euclidean, space. When these measures are applied to trajectories of actual individuals in an application area, alterations that are inconsequential in abstract space may suddenly become problematic once overlaid with geographic reality. In this work, we present a different view on trajectory similarity by introducing a measure that utilizes logical entailment. This is an inferential perspective that considers facts as triple statements deduced from the social and environmental context in which the travel takes place, and their practical implications. We suggest a formalization of entailment-based trajectory similarity, measured as the overlapping proportion of facts, which are spatial relation statements in our case study. With the proposed measure, we evaluate LSTM-TrajGAN, a privacy-preserving trajectory-generation model. The entailment-based model evaluation reveals potential consequences of disregarding the rich structure of geographic space (e.g., miscalculated insurance risk due to regional shifts in our toy example). Our work highlights the advantage of applying logical entailment to trajectory-similarity reasoning for location-privacy protection and beyond.


FLEE-GNN: A Federated Learning System for Edge-Enhanced Graph Neural Network in Analyzing Geospatial Resilience of Multicommodity Food Flows

arXiv.org Artificial Intelligence

Within the networks is a global imperative to tackle increasing food agrifood systems, food supply networks are pivotal in upholding insecurity. However, the complexity of these networks, with their global food security and facilitating the transit, dissemination, multidimensional interactions and decisions, presents significant and sale of food. It's imperative that these networks demonstrate challenges. This paper proposes FLEE-GNN, a novel Federated resilience and sturdiness [12, 15, 21]. Learning System for Edge-Enhanced Graph Neural Network, However, the complexity inherent in them, arising from designed to overcome these challenges and enhance the analysis of diverse food needs, shipment timeframes and costs, promotional geospatial resilience of multicommodity food flow network, which strategies, cultural and environmental considerations, among is one type of spatial networks. FLEE-GNN addresses the limitations others, complicates the assessment of their durability and of current methodologies, such as entropy-based methods, in terms adaptability [2, 23]. Given the intricate nature of food supply of generalizability, scalability, and data privacy. It combines the networks, the concept of resilience is often interpreted in diverse robustness and adaptability of graph neural networks with the ways by different individuals and groups [6, 12, 16, 22]. The term privacy-conscious and decentralized aspects of federated learning "resilience" in this study predominantly pertains to the capacity of on food supply network resilience analysis across geographical the food flow networks to sustain essential food supplies across regions.


Building Privacy-Preserving and Secure Geospatial Artificial Intelligence Foundation Models

arXiv.org Artificial Intelligence

In recent years we have seen substantial advances in foundation models for artificial intelligence, including language, vision, and multimodal models. Recent studies have highlighted the potential of using foundation models in geospatial artificial intelligence, known as GeoAI Foundation Models, for geographic question answering, remote sensing image understanding, map generation, and location-based services, among others. However, the development and application of GeoAI foundation models can pose serious privacy and security risks, which have not been fully discussed or addressed to date. This paper introduces the potential privacy and security risks throughout the lifecycle of GeoAI foundation models and proposes a comprehensive blueprint for research directions and preventative and control strategies. Through this vision paper, we hope to draw the attention of researchers and policymakers in geospatial domains to these privacy and security risks inherent in GeoAI foundation models and advocate for the development of privacy-preserving and secure GeoAI foundation models.


SSIF: Learning Continuous Image Representation for Spatial-Spectral Super-Resolution

arXiv.org Artificial Intelligence

Existing digital sensors capture images at fixed spatial and spectral resolutions (e.g., RGB, multispectral, and hyperspectral images), and each combination requires bespoke machine learning models. Neural Implicit Functions partially overcome the spatial resolution challenge by representing an image in a resolution-independent way. However, they still operate at fixed, pre-defined spectral resolutions. To address this challenge, we propose Spatial-Spectral Implicit Function (SSIF), a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain. We empirically demonstrate the effectiveness of SSIF on two challenging spatio-spectral super-resolution benchmarks. We observe that SSIF consistently outperforms state-of-the-art baselines even when the baselines are allowed to train separate models at each spectral resolution. We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions. Moreover, SSIF can generate high-resolution images that improve the performance of downstream tasks (e.g., land use classification) by 1.7%-7%. While the physical world is continuous, most digital sensors (e.g., cell phone cameras, multispectral or hyperspectral sensors in satellites) can only capture a discrete representation of continuous signals in both spatial and spectral domains (i.e., with a fixed number of spectral bands, such as red, green, and blue). In fact, due to the limited energy of incident photons, fundamental limitations in achievable signal-to-noise ratios (SNR), and time constraints, there is always a trade-off between spatial and spectral resolution (Mei et al., 2020; Ma et al., 2021) However, ML models are typically bespoke to certain resolutions, and models typically do not generalize to spatial or spectral resolutions they have not been trained on.


CATS: Conditional Adversarial Trajectory Synthesis for Privacy-Preserving Trajectory Data Publication Using Deep Learning Approaches

arXiv.org Artificial Intelligence

The prevalence of ubiquitous location-aware devices and mobile Internet enables us to collect massive individual-level trajectory dataset from users. Such trajectory big data bring new opportunities to human mobility research but also raise public concerns with regard to location privacy. In this work, we present the Conditional Adversarial Trajectory Synthesis (CATS), a deep-learning-based GeoAI methodological framework for privacy-preserving trajectory data generation and publication. CATS applies K-anonymity to the underlying spatiotemporal distributions of human movements, which provides a distributional-level strong privacy guarantee. By leveraging conditional adversarial training on K-anonymized human mobility matrices, trajectory global context learning using the attention-based mechanism, and recurrent bipartite graph matching of adjacent trajectory points, CATS is able to reconstruct trajectory topology from conditionally sampled locations and generate high-quality individual-level synthetic trajectory data, which can serve as supplements or alternatives to raw data for privacy-preserving trajectory data publication. The experiment results on over 90k GPS trajectories show that our method has a better performance in privacy preservation, spatiotemporal characteristic preservation, and downstream utility compared with baseline methods, which brings new insights into privacy-preserving human mobility research using generative AI techniques and explores data ethics issues in GIScience.


Tackling Vision Language Tasks Through Learning Inner Monologues

arXiv.org Artificial Intelligence

Visual language tasks require AI models to comprehend and reason with both visual and textual content. Driven by the power of Large Language Models (LLMs), two prominent methods have emerged: (1) the hybrid integration between LLMs and Vision-Language Models (VLMs), where visual inputs are firstly converted into language descriptions by VLMs, serving as inputs for LLMs to generate final answer(s); (2) visual feature alignment in language space, where visual inputs are encoded as embeddings and projected to LLMs' language space via further supervised fine-tuning. The first approach provides light training costs and interpretability but is hard to be optimized in an end-to-end fashion. The second approach presents decent performance, but feature alignment usually requires large amounts of training data and lacks interpretability. To tackle this dilemma, we propose a novel approach, Inner Monologue Multi-Modal Optimization (IMMO), to solve complex vision language problems by simulating inner monologue processes, a cognitive process in which an individual engages in silent verbal communication with themselves. We enable LLMs and VLMs to interact through natural language conversation and propose to use a two-stage training process to learn how to do the inner monologue (self-asking questions and answering questions). IMMO is evaluated on two popular tasks and the results suggest by emulating the cognitive phenomenon of internal dialogue, our approach can enhance reasoning and explanation abilities, contributing to the more effective fusion of vision and language models. More importantly, instead of using predefined human-crafted monologues, IMMO learns this process within the deep learning models, promising wider applicability to many different AI problems beyond vision language tasks.