Not enough data to create a plot.
Try a different view from the menu above.
Rangan, Sundeep
Channel Modeling for FR3 Upper Mid-band via Generative Adversarial Networks
Hu, Yaqi, Yin, Mingsheng, Mezzavilla, Marco, Guo, Hao, Rangan, Sundeep
The upper mid-band (FR3) has been recently attracting interest for new generation of mobile networks, as it provides a promising balance between spectrum availability and coverage, which are inherent limitations of the sub 6GHz and millimeter wave bands, respectively. In order to efficiently design and optimize the network, channel modeling plays a key role since FR3 systems are expected to operate at multiple frequency bands. Data-driven methods, especially generative adversarial networks (GANs), can capture the intricate relationships among data samples, and provide an appropriate tool for FR3 channel modeling. In this work, we present the architecture, link state model, and path generative network of GAN-based FR3 channel modeling. The comparison of our model greatly matches the ray-tracing simulated data.
Estimation of embedding vectors in high dimensions
Azar, Golara Ahmadi, Emami, Melika, Fletcher, Alyson, Rangan, Sundeep
Embeddings are a basic initial feature extraction step in many machine learning models, particularly in natural language processing. An embedding attempts to map data tokens to a low-dimensional space where similar tokens are mapped to vectors that are close to one another by some metric in the embedding space. A basic question is how well can such embedding be learned? To study this problem, we consider a simple probability model for discrete data where there is some "true" but unknown embedding where the correlation of random variables is related to the similarity of the embeddings. Under this model, it is shown that the embeddings can be learned by a variant of low-rank approximate message passing (AMP) method. The AMP approach enables precise predictions of the accuracy of the estimation in certain high-dimensional limits. In particular, the methodology provides insight on the relations of key parameters such as the number of samples per value, the frequency of the terms, and the strength of the embedding correlation on the probability distribution. Our theoretical findings are validated by simulations on both synthetic data and real text data.
VisPercep: A Vision-Language Approach to Enhance Visual Perception for People with Blindness and Low Vision
Hao, Yu, Yang, Fan, Huang, Hao, Yuan, Shuaihang, Rangan, Sundeep, Rizzo, John-Ross, Wang, Yao, Fang, Yi
People with blindness and low vision (pBLV) encounter substantial challenges when it comes to comprehensive scene recognition and precise object identification in unfamiliar environments. Additionally, due to the vision loss, pBLV have difficulty in accessing and identifying potential tripping hazards on their own. In this paper, we present a pioneering approach that leverages a large vision-language model to enhance visual perception for pBLV, offering detailed and comprehensive descriptions of the surrounding environments and providing warnings about the potential risks. Our method begins by leveraging a large image tagging model (i.e., Recognize Anything (RAM)) to identify all common objects present in the captured images. The recognition results and user query are then integrated into a prompt, tailored specifically for pBLV using prompt engineering. By combining the prompt and input image, a large vision-language model (i.e., InstructBLIP) generates detailed and comprehensive descriptions of the environment and identifies potential risks in the environment by analyzing the environmental objects and scenes, relevant to the prompt. We evaluate our approach through experiments conducted on both indoor and outdoor datasets. Our results demonstrate that our method is able to recognize objects accurately and provide insightful descriptions and analysis of the environment for pBLV.
A Deep Learning Sequential Decoder for Transient High-Density Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer Learning
Azar, Golara Ahmadi, Hu, Qin, Emami, Melika, Fletcher, Alyson, Rangan, Sundeep, Atashzar, S. Farokh
Hand gesture recognition (HGR) has gained significant attention due to the increasing use of AI-powered human-computer interfaces that can interpret the deep spatiotemporal dynamics of biosignals from the peripheral nervous system, such as surface electromyography (sEMG). These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons. However, the natural variability of sEMG among individuals has led researchers to focus on subject-specific solutions. Deep learning methods, which often have complex structures, are particularly data-hungry and can be time-consuming to train, making them less practical for subject-specific applications. In this paper, we propose and develop a generalizable, sequential decoder of transient high-density sEMG (HD-sEMG) that achieves 73% average accuracy on 65 gestures for partially-observed subjects through subject-embedded transfer learning, leveraging pre-knowledge of HGR acquired during pre-training. The use of transient HD-sEMG before gesture stabilization allows us to predict gestures with the ultimate goal of counterbalancing system control delays. The results show that the proposed generalized models significantly outperform subject-specific approaches, especially when the training data is limited, and there is a significant number of gesture classes. By building on pre-knowledge and incorporating a multiplicative subject-embedded structure, our method comparatively achieves more than 13% average accuracy across partially observed subjects with minimal data availability. This work highlights the potential of HD-sEMG and demonstrates the benefits of modeling common patterns across users to reduce the need for large amounts of data for new users, enhancing practicality.
ViT-MDHGR: Cross-day Reliability and Agility in Dynamic Hand Gesture Prediction via HD-sEMG Signal Decoding
Hu, Qin, Azar, Golara Ahmadi, Fletcher, Alyson, Rangan, Sundeep, Atashzar, S. Farokh
Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable and non-invasive manner. High intraday (same-day) performance has been reported. However, the interday performance (separating training and testing days) is substantially degraded due to the poor generalizability of conventional approaches over time, hindering the application of such techniques in real-life practices. There are limited recent studies on the feasibility of multi-day hand gesture recognition. The existing studies face a major challenge: the need for long sEMG epochs makes the corresponding neural interfaces impractical due to the induced delay in myoelectric control. This paper proposes a compact ViT-based network for multi-day dynamic hand gesture prediction. We tackle the main challenge as the proposed model only relies on very short HD-sEMG signal windows (i.e., 50 ms, accounting for only one-sixth of the convention for real-time myoelectric implementation), boosting agility and responsiveness. Our proposed model can predict 11 dynamic gestures for 20 subjects with an average accuracy of over 71% on the testing day, 3-25 days after training. Moreover, when calibrated on just a small portion of data from the testing day, the proposed model can achieve over 92% accuracy by retraining less than 10% of the parameters for computational efficiency.
Zero-Shot Wireless Indoor Navigation through Physics-Informed Reinforcement Learning
Yin, Mingsheng, Li, Tao, Lei, Haozhe, Hu, Yaqi, Rangan, Sundeep, Zhu, Quanyan
The growing focus on indoor robot navigation utilizing wireless signals has stemmed from the capability of these signals to capture high-resolution angular and temporal measurements. Prior heuristic-based methods, based on radio frequency propagation, are intuitive and generalizable across simple scenarios, yet fail to navigate in complex environments. On the other hand, end-to-end (e2e) deep reinforcement learning (RL), powered by advanced computing machinery, can explore the entire state space, delivering surprising performance when facing complex wireless environments. However, the price to pay is the astronomical amount of training samples, and the resulting policy, without fine-tuning (zero-shot), is unable to navigate efficiently in new scenarios unseen in the training phase. To equip the navigation agent with sample-efficient learning and {zero-shot} generalization, this work proposes a novel physics-informed RL (PIRL) where a distance-to-target-based cost (standard in e2e) is augmented with physics-informed reward shaping. The key intuition is that wireless environments vary, but physics laws persist. After learning to utilize the physics information, the agent can transfer this knowledge across different tasks and navigate in an unknown environment without fine-tuning. The proposed PIRL is evaluated using a wireless digital twin (WDT) built upon simulations of a large class of indoor environments from the AI Habitat dataset augmented with electromagnetic (EM) radiation simulation for wireless signals. It is shown that the PIRL significantly outperforms both e2e RL and heuristic-based solutions in terms of generalization and performance. Source code is available at \url{https://github.com/Panshark/PIRL-WIN}.
Local Convergence of Gradient Descent-Ascent for Training Generative Adversarial Networks
Becker, Evan, Pandit, Parthe, Rangan, Sundeep, Fletcher, Alyson K.
Generative Adversarial Networks (GANs) are a popular formulation to train generative models for complex high dimensional data. The standard method for training GANs involves a gradient descent-ascent (GDA) procedure on a minimax optimization problem. This procedure is hard to analyze in general due to the nonlinear nature of the dynamics. We study the local dynamics of GDA for training a GAN with a kernel-based discriminator. This convergence analysis is based on a linearization of a non-linear dynamical system that describes the GDA iterations, under an \textit{isolated points model} assumption from [Becker et al. 2022]. Our analysis brings out the effect of the learning rates, regularization, and the bandwidth of the kernel discriminator, on the local convergence rate of GDA. Importantly, we show phase transitions that indicate when the system converges, oscillates, or diverges. We also provide numerical simulations that verify our claims.
Path Planning Under Uncertainty to Localize mmWave Sources
Pfeiffer, Kai, Jia, Yuze, Yin, Mingsheng, Veldanda, Akshaj Kumar, Hu, Yaqi, Trivedi, Amee, Zhang, Jeff, Garg, Siddharth, Erkip, Elza, Rangan, Sundeep, Righetti, Ludovic
In this paper, we study a navigation problem where a mobile robot needs to locate a mmWave wireless signal. Using the directionality properties of the signal, we propose an estimation and path planning algorithm that can efficiently navigate in cluttered indoor environments. We formulate Extended Kalman filters for emitter location estimation in cases where the signal is received in line-of-sight or after reflections. We then propose to plan motion trajectories based on belief-space dynamics in order to minimize the uncertainty of the position estimates. The associated non-linear optimization problem is solved by a state-of-the-art constrained iLQR solver. In particular, we propose a method that can handle a large number of obstacles (~300) with reasonable computation times. We validate the approach in an extensive set of simulations. We show that our estimators can help increase navigation success rate and that planning to reduce estimation uncertainty can improve the overall task completion speed.
Asymptotics of Ridge Regression in Convolutional Models
Sahraee-Ardakan, Mojtaba, Mai, Tung, Rao, Anup, Rossi, Ryan, Rangan, Sundeep, Fletcher, Alyson K.
Understanding generalization and estimation error of estimators for simple models such as linear and generalized linear models has attracted a lot of attention recently. This is in part due to an interesting observation made in machine learning community that highly over-parameterized neural networks achieve zero training error, and yet they are able to generalize well over the test samples. This phenomenon is captured by the so called double descent curve, where the generalization error starts decreasing again after the interpolation threshold. A series of recent works tried to explain such phenomenon for simple models. In this work, we analyze the asymptotics of estimation error in ridge estimators for convolutional linear models. These convolutional inverse problems, also known as deconvolution, naturally arise in different fields such as seismology, imaging, and acoustics among others. Our results hold for a large class of input distributions that include i.i.d. features as a special case. We derive exact formulae for estimation error of ridge estimators that hold in a certain high-dimensional regime. We show the double descent phenomenon in our experiments for convolutional models and show that our theoretical results match the experiments.
Implicit Bias of Linear RNNs
Emami, Melikasadat, Sahraee-Ardakan, Mojtaba, Pandit, Parthe, Rangan, Sundeep, Fletcher, Alyson K.
Contemporary wisdom based on empirical studies suggests that standard recurrent neural networks (RNNs) do not perform well on tasks requiring long-term memory. However, precise reasoning for this behavior is still unknown. This paper provides a rigorous explanation of this property in the special case of linear RNNs. Although this work is limited to linear RNNs, even these systems have traditionally been difficult to analyze due to their non-linear parameterization. Using recently-developed kernel regime analysis, our main result shows that linear RNNs learned from random initializations are functionally equivalent to a certain weighted 1D-convolutional network. Importantly, the weightings in the equivalent model cause an implicit bias to elements with smaller time lags in the convolution and hence, shorter memory. The degree of this bias depends on the variance of the transition kernel matrix at initialization and is related to the classic exploding and vanishing gradients problem. The theory is validated in both synthetic and real data experiments.