Rangan, Nagu
Conversational User-AI Intervention: A Study on Prompt Rewriting for Improved LLM Response Generation
Sarkar, Rupak, Sarrafzadeh, Bahareh, Chandrasekaran, Nirupama, Rangan, Nagu, Resnik, Philip, Yang, Longqi, Jauhar, Sujay Kumar
Human-LLM conversations are increasingly becoming more pervasive in peoples' professional and personal lives, yet many users still struggle to elicit helpful responses from LLM Chatbots. One of the reasons for this issue is users' lack of understanding in crafting effective prompts that accurately convey their information needs. Meanwhile, the existence of real-world conversational datasets on the one hand, and the text understanding faculties of LLMs on the other, present a unique opportunity to study this problem, and its potential solutions at scale. Thus, in this paper we present the first LLM-centric study of real human-AI chatbot conversations, focused on investigating aspects in which user queries fall short of expressing information needs, and the potential of using LLMs to rewrite suboptimal user prompts. Our findings demonstrate that rephrasing ineffective prompts can elicit better responses from a conversational system, while preserving the user's original intent. Notably, the performance of rewrites improves in longer conversations, where contextual inferences about user needs can be made more accurately. Additionally, we observe that LLMs often need to -- and inherently do -- make \emph{plausible} assumptions about a user's intentions and goals when interpreting prompts. Our findings largely hold true across conversational domains, user intents, and LLMs of varying sizes and families, indicating the promise of using prompt rewriting as a solution for better human-AI interactions.
The Use of Generative Search Engines for Knowledge Work and Complex Tasks
Suri, Siddharth, Counts, Scott, Wang, Leijie, Chen, Chacha, Wan, Mengting, Safavi, Tara, Neville, Jennifer, Shah, Chirag, White, Ryen W., Andersen, Reid, Buscher, Georg, Manivannan, Sathish, Rangan, Nagu, Yang, Longqi
Until recently, search engines were the predominant method for people to access online information. The recent emergence of large language models (LLMs) has given machines new capabilities such as the ability to generate new digital artifacts like text, images, code etc., resulting in a new tool, a generative search engine, which combines the capabilities of LLMs with a traditional search engine. Through the empirical analysis of Bing Copilot (Bing Chat), one of the first publicly available generative search engines, we analyze the types and complexity of tasks that people use Bing Copilot for compared to Bing Search. Findings indicate that people use the generative search engine for more knowledge work tasks that are higher in cognitive complexity than were commonly done with a traditional search engine.
TnT-LLM: Text Mining at Scale with Large Language Models
Wan, Mengting, Safavi, Tara, Jauhar, Sujay Kumar, Kim, Yujin, Counts, Scott, Neville, Jennifer, Suri, Siddharth, Shah, Chirag, White, Ryen W, Yang, Longqi, Andersen, Reid, Buscher, Georg, Joshi, Dhruv, Rangan, Nagu
Transforming unstructured text into structured and meaningful forms, organized by useful category labels, is a fundamental step in text mining for downstream analysis and application. However, most existing methods for producing label taxonomies and building text-based label classifiers still rely heavily on domain expertise and manual curation, making the process expensive and time-consuming. This is particularly challenging when the label space is under-specified and large-scale data annotations are unavailable. In this paper, we address these challenges with Large Language Models (LLMs), whose prompt-based interface facilitates the induction and use of large-scale pseudo labels. We propose TnT-LLM, a two-phase framework that employs LLMs to automate the process of end-to-end label generation and assignment with minimal human effort for any given use-case. In the first phase, we introduce a zero-shot, multi-stage reasoning approach which enables LLMs to produce and refine a label taxonomy iteratively. In the second phase, LLMs are used as data labelers that yield training samples so that lightweight supervised classifiers can be reliably built, deployed, and served at scale. We apply TnT-LLM to the analysis of user intent and conversational domain for Bing Copilot (formerly Bing Chat), an open-domain chat-based search engine. Extensive experiments using both human and automatic evaluation metrics demonstrate that TnT-LLM generates more accurate and relevant label taxonomies when compared against state-of-the-art baselines, and achieves a favorable balance between accuracy and efficiency for classification at scale. We also share our practical experiences and insights on the challenges and opportunities of using LLMs for large-scale text mining in real-world applications.
Using Large Language Models to Generate, Validate, and Apply User Intent Taxonomies
Shah, Chirag, White, Ryen W., Andersen, Reid, Buscher, Georg, Counts, Scott, Das, Sarkar Snigdha Sarathi, Montazer, Ali, Manivannan, Sathish, Neville, Jennifer, Ni, Xiaochuan, Rangan, Nagu, Safavi, Tara, Suri, Siddharth, Wan, Mengting, Wang, Leijie, Yang, Longqi
Log data can reveal valuable information about how users interact with Web search services, what they want, and how satisfied they are. However, analyzing user intents in log data is not easy, especially for emerging forms of Web search such as AI-driven chat. To understand user intents from log data, we need a way to label them with meaningful categories that capture their diversity and dynamics. Existing methods rely on manual or machine-learned labeling, which are either expensive or inflexible for large and dynamic datasets. We propose a novel solution using large language models (LLMs), which can generate rich and relevant concepts, descriptions, and examples for user intents. However, using LLMs to generate a user intent taxonomy and apply it for log analysis can be problematic for two main reasons: (1) such a taxonomy is not externally validated; and (2) there may be an undesirable feedback loop. To address this, we propose a new methodology with human experts and assessors to verify the quality of the LLM-generated taxonomy. We also present an end-to-end pipeline that uses an LLM with human-in-the-loop to produce, refine, and apply labels for user intent analysis in log data. We demonstrate its effectiveness by uncovering new insights into user intents from search and chat logs from the Microsoft Bing commercial search engine. The proposed work's novelty stems from the method for generating purpose-driven user intent taxonomies with strong validation. This method not only helps remove methodological and practical bottlenecks from intent-focused research, but also provides a new framework for generating, validating, and applying other kinds of taxonomies in a scalable and adaptable way with minimal human effort.