Randhavane, Tanmay
STEP: Spatial Temporal Graph Convolutional Networks for Emotion Perception from Gaits
Bhattacharya, Uttaran, Mittal, Trisha, Chandra, Rohan, Randhavane, Tanmay, Bera, Aniket, Manocha, Dinesh
We present a novel classifier network called STEP, to classify perceived human emotion from gaits, based on a Spatial Temporal Graph Convolutional Network (ST-GCN) architecture. Given an RGB video of an individual walking, our formulation implicitly exploits the gait features to classify the emotional state of the human into one of four emotions: happy, sad, angry, or neutral. We use hundreds of annotated real-world gait videos and augment them with thousands of annotated synthetic gaits generated using a novel generative network called STEP-Gen, built on an ST-GCN based Conditional Variational Autoencoder (CVAE). We incorporate a novel push-pull regularization loss in the CVAE formulation of STEP-Gen to generate realistic gaits and improve the classification accuracy of STEP. We also release a novel dataset (E-Gait), which consists of $2,177$ human gaits annotated with perceived emotions along with thousands of synthetic gaits. In practice, STEP can learn the affective features and exhibits classification accuracy of 89% on E-Gait, which is 14 - 30% more accurate over prior methods.
FVA: Modeling Perceived Friendliness of Virtual Agents Using Movement Characteristics
Randhavane, Tanmay, Bera, Aniket, Kapsaskis, Kyra, Gray, Kurt, Manocha, Dinesh
We present a new approach for improving the friendliness and warmth of a virtual agent in an AR environment by generating appropriate movement characteristics. Our algorithm is based on a novel data-driven friendliness model that is computed using a user-study and psychological characteristics. We use our model to control the movements corresponding to the gaits, gestures, and gazing of friendly virtual agents (FVAs) as they interact with the user's avatar and other agents in the environment. We have integrated FVA agents with an AR environment using with a Microsoft HoloLens. Our algorithm can generate plausible movements at interactive rates to increase the social presence. We also investigate the perception of a user in an AR setting and observe that an FVA has a statistically significant improvement in terms of the perceived friendliness and social presence of a user compared to an agent without the friendliness modeling. We observe an increment of 5.71% in the mean responses to a friendliness measure and an improvement of 4.03% in the mean responses to a social presence measure.