Goto

Collaborating Authors

 Ranaldi, Leonardo


Improving Chain-of-Thought Reasoning via Quasi-Symbolic Abstractions

arXiv.org Artificial Intelligence

Chain-of-Though (CoT) represents a common strategy for reasoning in Large Language Models (LLMs) by decomposing complex tasks into intermediate inference steps. However, explanations generated via CoT are susceptible to content biases that negatively affect their robustness and faithfulness. To mitigate existing limitations, recent work has proposed using logical formalisms coupled with external symbolic solvers. However, fully symbolic approaches possess the bottleneck of requiring a complete translation from natural language to formal languages, a process that affects efficiency and flexibility. To achieve a trade-off, this paper investigates methods to disentangle content from logical reasoning without a complete formalisation. In particular, we present QuaSAR (for Quasi-Symbolic Abstract Reasoning), a variation of CoT that guides LLMs to operate at a higher level of abstraction via quasi-symbolic explanations. Our framework leverages the capability of LLMs to formalise only relevant variables and predicates, enabling the coexistence of symbolic elements with natural language. We show the impact of QuaSAR for in-context learning and for constructing demonstrations to improve the reasoning capabilities of smaller models. Our experiments show that quasi-symbolic abstractions can improve CoT-based methods by up to 8% accuracy, enhancing robustness and consistency on challenging adversarial variations on both natural language (i.e. MMLU-Redux) and symbolic reasoning tasks (i.e., GSM-Symbolic).


MeMo: Towards Language Models with Associative Memory Mechanisms

arXiv.org Artificial Intelligence

Memorization is a fundamental ability of Transformer-based Large Language Models, achieved through learning. In this paper, we propose a paradigm shift by designing an architecture to memorize text directly, bearing in mind the principle that memorization precedes learning. We introduce MeMo, a novel architecture for language modeling that explicitly memorizes sequences of tokens in layered associative memories. By design, MeMo offers transparency and the possibility of model editing, including forgetting texts. We experimented with the MeMo architecture, showing the memorization power of the one-layer and the multi-layer configurations.


Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models(LLMs) in systematically accessing richer factual context. However, the integration of RAG mechanisms brings its inherent challenges, as LLMs need to deal with potentially noisy contexts. Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations. In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations. In particular, we propose Contrastive-RAG (C-RAG), a framework that (i) retrieves relevant documents given a query, (ii) selects and exemplifies relevant passages, and (iii) generates explanations that explicitly contrast the relevance of the passages to (iv) support the final answer. We show the impact of C-RAG building contrastive reasoning demonstrations from LLMs to instruct smaller models for retrieval-augmented tasks. Extensive experiments demonstrate that C-RAG improves state-of-the-art RAG models while (a) requiring significantly fewer prompts and demonstrations and (b) being robust to perturbations in the retrieved documents.


Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models

arXiv.org Artificial Intelligence

The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT) using demonstrations generated from robust Large Language Models (LLMs). Although these approaches deliver more performant models, they do not show sufficiently strong generalization ability as the training only relies on the provided demonstrations. In this paper, we propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities. Our approach is based on a two-stage process, where reasoning abilities are first transferred between LLMs and Small Language Models (SLMs) via Instruction-tuning on demonstrations provided by LLMs, and then the instructed models Self-refine their abilities through preference optimization strategies. In particular, the second phase operates refinement heuristics based on the Direct Preference Optimization algorithm, where the SLMs are elicited to deliver a series of reasoning paths by automatically sampling the generated responses and providing rewards using ground truths from the LLMs. Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios, aligning the reasoning abilities of Smaller and Larger Language Models.


Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation

arXiv.org Artificial Intelligence

Understanding textual description to generate code seems to be an achieved capability of instruction-following Large Language Models (LLMs) in zero-shot scenario. However, there is a severe possibility that this translation ability may be influenced by having seen target textual descriptions and the related code. This effect is known as Data Contamination. In this study, we investigate the impact of Data Contamination on the performance of GPT-3.5 in the Text-to-SQL code-generating tasks. Hence, we introduce a novel method to detect Data Contamination in GPTs and examine GPT-3.5's Text-to-SQL performances using the known Spider Dataset and our new unfamiliar dataset Termite. Furthermore, we analyze GPT-3.5's efficacy on databases with modified information via an adversarial table disconnection (ATD) approach, complicating Text-to-SQL tasks by removing structural pieces of information from the database. Our results indicate a significant performance drop in GPT-3.5 on the unfamiliar Termite dataset, even with ATD modifications, highlighting the effect of Data Contamination on LLMs in Text-to-SQL translation tasks.


The Dark Side of the Language: Pre-trained Transformers in the DarkNet

arXiv.org Artificial Intelligence

Pre-trained Transformers are challenging human performances in many NLP tasks. The massive datasets used for pre-training seem to be the key to their success on existing tasks. In this paper, we explore how a range of pre-trained Natural Language Understanding models perform on definitely unseen sentences provided by classification tasks over a DarkNet corpus. Surprisingly, results show that syntactic and lexical neural networks perform on par with pre-trained Transformers even after fine-tuning. Only after what we call extreme domain adaptation, that is, retraining with the masked language model task on all the novel corpus, pre-trained Transformers reach their standard high results. This suggests that huge pre-training corpora may give Transformers unexpected help since they are exposed to many of the possible sentences.


When Large Language Models contradict humans? Large Language Models' Sycophantic Behaviour

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have been demonstrating the ability to solve complex tasks by delivering answers that are positively evaluated by humans due in part to the intensive use of human feedback that refines responses. However, the suggestibility transmitted through human feedback increases the inclination to produce responses that correspond to the user's beliefs or misleading prompts as opposed to true facts, a behaviour known as sycophancy. This phenomenon decreases the bias, robustness, and, consequently, their reliability. In this paper, we shed light on the suggestibility of LLMs to sycophantic behaviour, demonstrating these tendencies via human-influenced prompts over different tasks. Our investigation reveals that LLMs show sycophantic tendencies when responding to queries involving subjective opinions and statements that should elicit a contrary response based on facts, demonstrating a lack of robustness.


HANS, are you clever? Clever Hans Effect Analysis of Neural Systems

arXiv.org Artificial Intelligence

Instruction-tuned Large Language Models (It-LLMs) have been exhibiting outstanding abilities to reason around cognitive states, intentions, and reactions of all people involved, letting humans guide and comprehend day-to-day social interactions effectively. In fact, several multiple-choice questions (MCQ) benchmarks have been proposed to construct solid assessments of the models' abilities. However, earlier works are demonstrating the presence of inherent "order bias" in It-LLMs, posing challenges to the appropriate evaluation. In this paper, we investigate It-LLMs' resilience abilities towards a series of probing tests using four MCQ benchmarks. Introducing adversarial examples, we show a significant performance gap, mainly when varying the order of the choices, which reveals a selection bias and brings into discussion reasoning abilities. Following a correlation between first positions and model choices due to positional bias, we hypothesized the presence of structural heuristics in the decision-making process of the It-LLMs, strengthened by including significant examples in few-shot scenarios. Finally, by using the Chain-of-Thought (CoT) technique, we elicit the model to reason and mitigate the bias by obtaining more robust models.


A Trip Towards Fairness: Bias and De-Biasing in Large Language Models

arXiv.org Artificial Intelligence

Cheap-to-Build Very Large-Language Models (CtB-LLMs) with affordable training are emerging as the next big revolution in natural language processing and understanding. These CtB-LLMs are democratizing access to trainable Very Large-Language Models (VLLMs) and, thus, may represent the building blocks of many NLP systems solving downstream tasks. Hence, a little or a large bias in CtB-LLMs may cause huge harm. In this paper, we performed a large investigation of the bias of three families of CtB-LLMs, and we showed that debiasing techniques are effective and usable. Indeed, according to current tests, the LLaMA and the OPT families have an important bias in gender, race, religion, and profession. In contrast to the analysis for other LLMs, we discovered that bias depends not on the number of parameters but on the perplexity. Finally, the debiasing of OPT using LoRA reduces bias up to 4.12 points in the normalized stereotype score.


Empowering Cross-lingual Abilities of Instruction-tuned Large Language Models by Translation-following demonstrations

arXiv.org Artificial Intelligence

The language ability of Large Language Models (LLMs) is often unbalanced towards English because of the imbalance in the distribution of the pre-training data. This disparity is demanded in further fine-tuning and affecting the cross-lingual abilities of LLMs. In this paper, we propose to empower Instructiontuned LLMs (It-LLMs) in languages other than English by building semantic alignment between them. Hence, we propose CrossAlpaca, an It-LLM with cross-lingual instruction-following and Translation-following demonstrations to improve semantic alignment between languages. We validate our approach on the multilingual Question Answering (QA) benchmarks XQUAD and MLQA and adapted versions of MMLU and BBH. Our models, tested over six different languages, outperform the It-LLMs tuned on monolingual data. The final results show that instruction tuning on non-English data is not enough and that semantic alignment can be further improved by Translation-following demonstrations.