Ranade, Priyanka
Scaling Studies for Efficient Parameter Search and Parallelism for Large Language Model Pre-training
Benington, Michael, Phan, Leo, Paul, Chris Pierre, Shoemaker, Evan, Ranade, Priyanka, Collett, Torstein, Perez, Grant Hodgson, Krieger, Christopher
AI accelerator processing capabilities and memory constraints largely dictate the scale in which machine learning workloads (e.g., training and inference) can be executed within a desirable time frame. Training a state of the art, transformer-based model today requires use of GPU-accelerated high performance computers with high-speed interconnects. As datasets and models continue to increase in size, computational requirements and memory demands for AI also continue to grow. These challenges have inspired the development of distributed algorithm and circuit-based optimization techniques that enable the ability to progressively scale models in multi-node environments, efficiently minimize neural network cost functions for faster convergence, and store more parameters into a set number of available resources. In our research project, we focus on parallel and distributed machine learning algorithm development, specifically for optimizing the data processing and pre-training of a set of 5 encoder-decoder LLMs, ranging from 580 million parameters to 13 billion parameters. We performed a fine-grained study to quantify the relationships between three ML parallelism methods, specifically exploring Microsoft DeepSpeed Zero Redundancy Optimizer (ZeRO) stages.
Recognizing and Extracting Cybersecurtity-relevant Entities from Text
Hanks, Casey, Maiden, Michael, Ranade, Priyanka, Finin, Tim, Joshi, Anupam
Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks and is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG). There is a strong need to develop community-accessible datasets to train existing AI-based cybersecurity pipelines to efficiently and accurately extract meaningful insights from CTI. We have created an initial unstructured CTI corpus from a variety of open sources that we are using to train and test cybersecurity entity models using the spaCy framework and exploring self-learning methods to automatically recognize cybersecurity entities. We also describe methods to apply cybersecurity domain entity linking with existing world knowledge from Wikidata. Our future work will survey and test spaCy NLP tools and create methods for continuous integration of new information extracted from text.
Generating Fake Cyber Threat Intelligence Using Transformer-Based Models
Ranade, Priyanka, Piplai, Aritran, Mittal, Sudip, Joshi, Anupam, Finin, Tim
Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing the model to learn incorrect inputs to serve their malicious needs. In this paper, we automatically generate fake CTI text descriptions using transformers. We show that given an initial prompt sentence, a public language model like GPT-2 with fine-tuning, can generate plausible CTI text with the ability of corrupting cyber-defense systems. We utilize the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The poisoning attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cybersecurity professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI as true.