Goto

Collaborating Authors

 Rana, Omer


A Circular Construction Product Ontology for End-of-Life Decision-Making

arXiv.org Artificial Intelligence

Efficient management of end-of-life (EoL) products is critical for advancing circularity in supply chains, particularly within the construction industry where EoL strategies are hindered by heterogenous lifecycle data and data silos. Current tools like Environmental Product Declarations (EPDs) and Digital Product Passports (DPPs) are limited by their dependency on seamless data integration and interoperability which remain significant challenges. To address these, we present the Circular Construction Product Ontology (CCPO), an applied framework designed to overcome semantic and data heterogeneity challenges in EoL decision-making for construction products. CCPO standardises vocabulary and facilitates data integration across supply chain stakeholders enabling lifecycle assessments (LCA) and robust decision-making. By aggregating disparate data into a unified product provenance, CCPO enables automated EoL recommendations through customisable SWRL rules aligned with European standards and stakeholder-specific circularity SLAs, demonstrating its scalability and integration capabilities. The adopted circular product scenario depicts CCPO's application while competency question evaluations show its superior performance in generating accurate EoL suggestions highlighting its potential to greatly improve decision-making in circular supply chains and its applicability in real-world construction environments.


Gotham Dataset 2025: A Reproducible Large-Scale IoT Network Dataset for Intrusion Detection and Security Research

arXiv.org Artificial Intelligence

In this paper, a dataset of IoT network traffic is presented. Our dataset was generated by utilising the Gotham testbed, an emulated large-scale Internet of Things (IoT) network designed to provide a realistic and heterogeneous environment for network security research. The testbed includes 78 emulated IoT devices operating on various protocols, including MQTT, CoAP, and RTSP. Network traffic was captured in Packet Capture (PCAP) format using tcpdump, and both benign and malicious traffic were recorded. Malicious traffic was generated through scripted attacks, covering a variety of attack types, such as Denial of Service (DoS), Telnet Brute Force, Network Scanning, CoAP Amplification, and various stages of Command and Control (C&C) communication. The data were subsequently processed in Python for feature extraction using the Tshark tool, and the resulting data was converted to Comma Separated Values (CSV) format and labelled. The data repository includes the raw network traffic in PCAP format and the processed labelled data in CSV format. Our dataset was collected in a distributed manner, where network traffic was captured separately for each IoT device at the interface between the IoT gateway and the device. Our dataset was collected in a distributed manner, where network traffic was separately captured for each IoT device at the interface between the IoT gateway and the device. With its diverse traffic patterns and attack scenarios, this dataset provides a valuable resource for developing Intrusion Detection Systems and security mechanisms tailored to complex, large-scale IoT environments. The dataset is publicly available at Zenodo.


Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models

arXiv.org Artificial Intelligence

Despite the recent broad adoption of Large Language Models (LLMs) across various domains, their potential for enriching information systems in extracting and exploring Linked Data (LD) and Resource Description Framework (RDF) triplestores has not been extensively explored. This paper examines the integration of LLMs within existing systems, emphasising the enhancement of conversational user interfaces (UIs) and their capabilities for data extraction by producing more accurate SPARQL queries without the requirement for model retraining. Typically, conversational UI models necessitate retraining with the introduction of new datasets or updates, limiting their functionality as general-purpose extraction tools. Our approach addresses this limitation by incorporating LLMs into the conversational UI workflow, significantly enhancing their ability to comprehend and process user queries effectively. By leveraging the advanced natural language understanding capabilities of LLMs, our method improves RDF entity extraction within web systems employing conventional chatbots. This integration facilitates a more nuanced and context-aware interaction model, critical for handling the complex query patterns often encountered in RDF datasets and Linked Open Data (LOD) endpoints. The evaluation of this methodology shows a marked enhancement in system expressivity and the accuracy of responses to user queries, indicating a promising direction for future research in this area. This investigation not only underscores the versatility of LLMs in enhancing existing information systems but also sets the stage for further explorations into their potential applications within more specialised domains of web information systems.


Transformative Effects of ChatGPT on Modern Education: Emerging Era of AI Chatbots

arXiv.org Artificial Intelligence

ChatGPT, an AI-based chatbot, was released to provide coherent and useful replies based on analysis of large volumes of data. In this article, leading scientists, researchers and engineers discuss the transformative effects of ChatGPT on modern education. This research seeks to improve our knowledge of ChatGPT capabilities and its use in the education sector, identifying potential concerns and challenges. Our preliminary evaluation concludes that ChatGPT performed differently in each subject area including finance, coding and maths. While ChatGPT has the ability to help educators by creating instructional content, offering suggestions and acting as an online educator to learners by answering questions and promoting group work, there are clear drawbacks in its use, such as the possibility of producing inaccurate or false data and circumventing duplicate content (plagiarism) detectors where originality is essential. The often reported hallucinations within Generative AI in general, and also relevant for ChatGPT, can render its use of limited benefit where accuracy is essential. What ChatGPT lacks is a stochastic measure to help provide sincere and sensitive communication with its users. Academic regulations and evaluation practices used in educational institutions need to be updated, should ChatGPT be used as a tool in education. To address the transformative effects of ChatGPT on the learning environment, educating teachers and students alike about its capabilities and limitations will be crucial.


Hierarchical and Decentralised Federated Learning

arXiv.org Artificial Intelligence

Federated learning has shown enormous promise as a way of training ML models in distributed environments while reducing communication costs and protecting data privacy. However, the rise of complex cyber-physical systems, such as the Internet-of-Things, presents new challenges that are not met with traditional FL methods. Hierarchical Federated Learning extends the traditional FL process to enable more efficient model aggregation based on application needs or characteristics of the deployment environment (e.g., resource capabilities and/or network connectivity). It illustrates the benefits of balancing processing across the cloud-edge continuum. Hierarchical Federated Learning is likely to be a key enabler for a wide range of applications, such as smart farming and smart energy management, as it can improve performance and reduce costs, whilst also enabling FL workflows to be deployed in environments that are not well-suited to traditional FL. Model aggregation algorithms, software frameworks, and infrastructures will need to be designed and implemented to make such solutions accessible to researchers and engineers across a growing set of domains. H-FL also introduces a number of new challenges. For instance, there are implicit infrastructural challenges. There is also a trade-off between having generalised models and personalised models. If there exist geographical patterns for data (e.g., soil conditions in a smart farm likely are related to the geography of the region itself), then it is crucial that models used locally can consider their own locality in addition to a globally-learned model. H-FL will be crucial to future FL solutions as it can aggregate and distribute models at multiple levels to optimally serve the trade-off between locality dependence and global anomaly robustness.