Ramesh, Visvanathan
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Jaziri, Achref, Ditzel, Sina, Pliushch, Iuliia, Ramesh, Visvanathan
Modern data-driven machine learning system designs exploit inductive biases on architectural structure, invariance and equivariance requirements, task specific loss functions, and computational optimization tools. Previous works have illustrated that inductive bias in the early layers of the encoder in the form of human specified quasi-invariant filters can serve as a powerful inductive bias to attain better robustness and transparency in learned classifiers. This paper explores this further in the context of representation learning with local plasticity rules i.e. bio-inspired Hebbian learning . We propose a modular framework trained with a bio-inspired variant of contrastive predictive coding (Hinge CLAPP Loss). Our framework is composed of parallel encoders each leveraging a different invariant visual descriptor as an inductive bias. We evaluate the representation learning capacity of our system in a classification scenario on image data of various difficulties (GTSRB, STL10, CODEBRIM) as well as video data (UCF101). Our findings indicate that this form of inductive bias can be beneficial in closing the gap between models with local plasticity rules and backpropagation models as well as learning more robust representations in general.
Designing a Hybrid Neural System to Learn Real-world Crack Segmentation from Fractal-based Simulation
Jaziri, Achref, Mundt, Martin, Rodriguez, Andres Fernandez, Ramesh, Visvanathan
Identification of cracks is essential to assess the structural integrity of concrete infrastructure. However, robust crack segmentation remains a challenging task for computer vision systems due to the diverse appearance of concrete surfaces, variable lighting and weather conditions, and the overlapping of different defects. In particular recent data-driven methods struggle with the limited availability of data, the fine-grained and time-consuming nature of crack annotation, and face subsequent difficulty in generalizing to out-of-distribution samples. In this work, we move past these challenges in a two-fold way. We introduce a high-fidelity crack graphics simulator based on fractals and a corresponding fully-annotated crack dataset. We then complement the latter with a system that learns generalizable representations from simulation, by leveraging both a pointwise mutual information estimate along with adaptive instance normalization as inductive biases. Finally, we empirically highlight how different design choices are symbiotic in bridging the simulation to real gap, and ultimately demonstrate that our introduced system can effectively handle real-world crack segmentation.
When Deep Classifiers Agree: Analyzing Correlations between Learning Order and Image Statistics
Pliushch, Iuliia, Mundt, Martin, Lupp, Nicolas, Ramesh, Visvanathan
Although a plethora of architectural variants for deep classification has been introduced over time, recent works have found empirical evidence towards similarities in their training process. It has been hypothesized that neural networks converge not only to similar representations, but also exhibit a notion of empirical agreement on which data instances are learned first. Following in the latter works$'$ footsteps, we define a metric to quantify the relationship between such classification agreement over time, and posit that the agreement phenomenon can be mapped to core statistics of the investigated dataset. We empirically corroborate this hypothesis across the CIFAR10, Pascal, ImageNet and KTH-TIPS2 datasets. Our findings indicate that agreement seems to be independent of specific architectures, training hyper-parameters or labels, albeit follows an ordering according to image statistics.
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Mundt, Martin, Hong, Yong Won, Pliushch, Iuliia, Ramesh, Visvanathan
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
Open Set Recognition Through Deep Neural Network Uncertainty: Does Out-of-Distribution Detection Require Generative Classifiers?
Mundt, Martin, Pliushch, Iuliia, Majumder, Sagnik, Ramesh, Visvanathan
We present an analysis of predictive uncertainty based out-of-distribution detection for different approaches to estimate various models' epistemic uncertainty and contrast it with extreme value theory based open set recognition. While the former alone does not seem to be enough to overcome this challenge, we demonstrate that uncertainty goes hand in hand with the latter method. This seems to be particularly reflected in a generative model approach, where we show that posterior based open set recognition outperforms discriminative models and predictive uncertainty based outlier rejection, raising the question of whether classifiers need to be generative in order to know what they have not seen.
Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
Mundt, Martin, Majumder, Sagnik, Pliushch, Iuliia, Ramesh, Visvanathan
We introduce a unified probabilistic approach for deep continual learning based on variational Bayesian inference with open set recognition. Our model combines a probabilistic encoder with a generative model and a generative linear classifier that get shared across tasks. The open set recognition bounds the approximate posterior by fitting regions of high density on the basis of correctly classified data points and balances open-space risk with recognition errors. Catastrophic inference for both generative models is significantly alleviated through generative replay, where the open set recognition is used to sample from high density areas of the class specific posterior and reject statistical outliers. Our approach naturally allows for forward and backward transfer while maintaining past knowledge without the necessity of storing old data, regularization or inferring task labels. We demonstrate compelling results in the challenging scenario of incrementally expanding the single-head classifier for both class incremental visual and audio classification tasks, as well as incremental learning of datasets across modalities.
Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification with the COncrete DEfect BRidge IMage Dataset
Mundt, Martin, Majumder, Sagnik, Murali, Sreenivas, Panetsos, Panagiotis, Ramesh, Visvanathan
Recognition of defects in concrete infrastructure, especially in bridges, is a costly and time consuming crucial first step in the assessment of the structural integrity. Large variation in appearance of the concrete material, changing illumination and weather conditions, a variety of possible surface markings as well as the possibility for different types of defects to overlap, make it a challenging real-world task. In this work we introduce the novel COncrete DEfect BRidge IMage dataset (CODEBRIM) for multi-target classification of five commonly appearing concrete defects. We investigate and compare two reinforcement learning based meta-learning approaches, MetaQNN and efficient neural architecture search, to find suitable convolutional neural network architectures for this challenging multi-class multi-target task. We show that learned architectures have fewer overall parameters in addition to yielding better multi-target accuracy in comparison to popular neural architectures from the literature evaluated in the context of our application.
Rethinking Layer-wise Feature Amounts in Convolutional Neural Network Architectures
Mundt, Martin, Majumder, Sagnik, Weis, Tobias, Ramesh, Visvanathan
We characterize convolutional neural networks with respect to the relative amount of features per layer. Using a skew normal distribution as a parametrized framework, we investigate the common assumption of monotonously increasing feature-counts with higher layers of architecture designs. Our evaluation on models with VGG-type layers on the MNIST, Fashion-MNIST and CIFAR-10 image classification benchmarks provides evidence that motivates rethinking of our common assumption: architectures that favor larger early layers seem to yield better accuracy.