Goto

Collaborating Authors

 Ramchandran, Kannan


Max-Affine Regression: Provable, Tractable, and Near-Optimal Statistical Estimation

arXiv.org Machine Learning

Max-affine regression refers to a model where the unknown regression function is modeled as a maximum of $k$ unknown affine functions for a fixed $k \geq 1$. This generalizes linear regression and (real) phase retrieval, and is closely related to convex regression. Working within a non-asymptotic framework, we study this problem in the high-dimensional setting assuming that $k$ is a fixed constant, and focus on estimation of the unknown coefficients of the affine functions underlying the model. We analyze a natural alternating minimization (AM) algorithm for the non-convex least squares objective when the design is random. We show that the AM algorithm, when initialized suitably, converges with high probability and at a geometric rate to a small ball around the optimal coefficients. In order to initialize the algorithm, we propose and analyze a combination of a spectral method and a random search scheme in a low-dimensional space, which may be of independent interest. The final rate that we obtain is near-parametric and minimax optimal (up to a poly-logarithmic factor) as a function of the dimension, sample size, and noise variance. In that sense, our approach should be viewed as a direct and implementable method of enforcing regularization to alleviate the curse of dimensionality in problems of the convex regression type. As a by-product of our analysis, we also obtain guarantees on a classical algorithm for the phase retrieval problem under considerably weaker assumptions on the design distribution than was previously known. Numerical experiments illustrate the sharpness of our bounds in the various problem parameters.


Robust Federated Learning in a Heterogeneous Environment

arXiv.org Machine Learning

We study a recently proposed large-scale distributed learning paradigm, namely Federated Learning, where the worker machines are end users' own devices. Statistical and computational challenges arise in Federated Learning particularly in the presence of heterogeneous data distribution (i.e., data points on different devices belong to different distributions signifying different clusters) and Byzantine machines (i.e., machines that may behave abnormally, or even exhibit arbitrary and potentially adversarial behavior). To address the aforementioned challenges, first we propose a general statistical model for this problem which takes both the cluster structure of the users and the Byzantine machines into account. Then, leveraging the statistical model, we solve the robust heterogeneous Federated Learning problem \emph{optimally}; in particular our algorithm matches the lower bound on the estimation error in dimension and the number of data points. Furthermore, as a by-product, we prove statistical guarantees for an outlier-robust clustering algorithm, which can be considered as the Lloyd algorithm with robust estimation. Finally, we show via synthetic as well as real data experiments that the estimation error obtained by our proposed algorithm is significantly better than the non-Byzantine-robust algorithms; in particular, we gain at least by 53\% and 33\% for synthetic and real data experiments, respectively, in typical settings.


Gradient Coding Based on Block Designs for Mitigating Adversarial Stragglers

arXiv.org Machine Learning

Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, suffer from slow running machines, called 'stragglers'. Gradient coding is a coding-theoretic framework to mitigate stragglers by enabling the server to recover the gradient sum in the presence of stragglers. 'Approximate gradient codes' are variants of gradient codes that reduce computation and storage overhead per worker by allowing the server to approximately reconstruct the gradient sum. In this work, our goal is to construct approximate gradient codes that are resilient to stragglers selected by a computationally unbounded adversary. Our motivation for constructing codes to mitigate adversarial stragglers stems from the challenge of tackling stragglers in massive-scale elastic and serverless systems, wherein it is difficult to statistically model stragglers. Towards this end, we propose a class of approximate gradient codes based on balanced incomplete block designs (BIBDs). We show that the approximation error for these codes depends only on the number of stragglers, and thus, adversarial straggler selection has no advantage over random selection. In addition, the proposed codes admit computationally efficient decoding at the server. Next, to characterize fundamental limits of adversarial straggling, we consider the notion of 'adversarial threshold' -- the smallest number of workers that an adversary must straggle to inflict certain approximation error. We compute a lower bound on the adversarial threshold, and show that codes based on symmetric BIBDs maximize this lower bound among a wide class of codes, making them excellent candidates for mitigating adversarial stragglers.


Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples

arXiv.org Machine Learning

State-of-the-art neural networks are vulnerable to adversarial examples; they can easily misclassify inputs that are imperceptibly different than their training and test data. In this work, we establish that the use of cross-entropy loss function and the low-rank features of the training data have responsibility for the existence of these inputs. Based on this observation, we suggest that addressing adversarial examples requires rethinking the use of cross-entropy loss function and looking for an alternative that is more suited for minimization with low-rank features. In this direction, we present a training scheme called differential training, which uses a loss function defined on the differences between the features of points from opposite classes. We show that differential training can ensure a large margin between the decision boundary of the neural network and the points in the training dataset. This larger margin increases the amount of perturbation needed to flip the prediction of the classifier and makes it harder to find an adversarial example with small perturbations. We test differential training on a binary classification task with CIFAR-10 dataset and demonstrate that it radically reduces the ratio of images for which an adversarial example could be found -- not only in the training dataset, but in the test dataset as well.


Rademacher Complexity for Adversarially Robust Generalization

arXiv.org Machine Learning

In recent years, many modern machine learning models, in particular, deep neural networks, have achieved success in tasks such as image classification [31, 25], speech recognition [23], machine translation [5], game playing [45], etc. However, although these models achieve the state-of-the-art performance in many standard benchmarks or competitions, it has been observed that by adversarially adding some perturbation to the input of the model (images, audio signals), the machine learning models can make wrong predictions with high confidence. These adversarial inputs are often called the adversarial examples. Typical methods of generating adversarial examples include adding small perturbations that are imperceptible to humans [48], changing surrounding areas of the main objects in images [19], and even simple rotation and translation [16]. This phenomenon was first discovered by Szegedy et al. [48] in image classification problems, and similar phenomena have been observed in other areas [13, 30]. Adversarial examples bring serious challenges in many security-critical applications, such as medical diagnosis and autonomous driving--the existence of these examples shows that many state-of-the-art machine learning models are actually unreliable in the presence of adversarial attacks. Since the discovery of adversarial examples, there has been a race between designing robust models that can defend against adversarial attacks and designing attack algorithms that can generate adversarial examples and fool the machine learning models [22, 24, 11, 12].


Frank-Wolfe Algorithm for Exemplar Selection

arXiv.org Machine Learning

In this paper, we consider the problem of selecting representatives from a data set for arbitrary supervised/unsupervised learning tasks. We identify a subset $S$ of a data set $A$ such that 1) the size of $S$ is much smaller than $A$ and 2) $S$ efficiently describes the entire data set, in a way formalized via auto-regression. The set $S$, also known as the exemplars of the data set $A$, is constructed by solving a convex auto-regressive version of dictionary learning where the dictionary and measurements are given by the data matrix. We show that in order to generate $|S| = k$ exemplars, our algorithm, Frank-Wolfe Sparse Representation (FWSR), only requires $\approx k$ iterations with a per-iteration cost that is quadratic in the size of $A$, an order of magnitude faster than state of the art methods. We test our algorithm against current methods on 4 different data sets and are able to outperform other exemplar finding methods in almost all scenarios. We also test our algorithm qualitatively by selecting exemplars from a corpus of Donald Trump and Hillary Clinton's twitter posts.


Online Scoring with Delayed Information: A Convex Optimization Viewpoint

arXiv.org Machine Learning

We consider a system where agents enter in an online fashion and are evaluated based on their attributes or context vectors. There can be practical situations where this context is partially observed, and the unobserved part comes after some delay. We assume that an agent, once left, cannot re-enter the system. Therefore, the job of the system is to provide an estimated score for the agent based on her instantaneous score and possibly some inference of the instantaneous score over the delayed score. In this paper, we estimate the delayed context via an online convex game between the agent and the system. We argue that the error in the score estimate accumulated over $T$ iterations is small if the regret of the online convex game is small. Further, we leverage side information about the delayed context in the form of a correlation function with the known context. We consider the settings where the delay is fixed or arbitrarily chosen by an adversary. Furthermore, we extend the formulation to the setting where the contexts are drawn from some Banach space. Overall, we show that the average penalty for not knowing the delayed context while making a decision scales with $\mathcal{O}(\frac{1}{\sqrt{T}})$, where this can be improved to $\mathcal{O}(\frac{\log T}{T})$ under special setting.


Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning

arXiv.org Machine Learning

In this paper, we study robust large-scale distributed learning in the presence of saddle points in non-convex loss functions. We consider the Byzantine setting where some worker machines may have abnormal or even arbitrary and adversarial behavior. We argue that in the Byzantine setting, optimizing a non-convex function and escaping saddle points become much more challenging, even when robust gradient estimators are used. We develop ByzantinePGD, a robust and communication-efficient algorithm that can provably escape saddle points and converge to approximate local minimizers. The iteration complexity of our algorithm in the Byzantine setting matches that of standard gradient descent in the usual setting. We further provide three robust aggregation subroutines that can be used in ByzantinePGD, including median, trimmed mean, and iterative filtering. We characterize their performance in statistical settings, and argue for their near-optimality in different regimes including the high dimensional setting.


Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates

arXiv.org Machine Learning

In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures---arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving optimal statistical performance. A main result of this work is a sharp analysis of two robust distributed gradient descent algorithms based on median and trimmed mean operations, respectively. We prove statistical error rates for three kinds of population loss functions: strongly convex, non-strongly convex, and smooth non-convex. In particular, these algorithms are shown to achieve order-optimal statistical error rates for strongly convex losses. To achieve better communication efficiency, we further propose a median-based distributed algorithm that is provably robust, and uses only one communication round. For strongly convex quadratic loss, we show that this algorithm achieves the same optimal error rate as the robust distributed gradient descent algorithms.


Approximate Ranking from Pairwise Comparisons

arXiv.org Machine Learning

A common problem in machine learning is to rank a set of n items based on pairwise comparisons. Here ranking refers to partitioning the items into sets of pre-specified sizes according to their scores, which includes identification of the top-k items as the most prominent special case. The score of a given item is defined as the probability that it beats a randomly chosen other item. Finding an exact ranking typically requires a prohibitively large number of comparisons, but in practice, approximate rankings are often adequate. Accordingly, we study the problem of finding approximate rankings from pairwise comparisons. We analyze an active ranking algorithm that counts the number of comparisons won, and decides whether to stop or which pair of items to compare next, based on confidence intervals computed from the data collected in previous steps. We show that this algorithm succeeds in recovering approximate rankings using a number of comparisons that is close to optimal up to logarithmic factors. We also present numerical results, showing that in practice, approximation can drastically reduce the number of comparisons required to estimate a ranking.