Ramanujan, M. S.
On the Constrained Least-cost Tour Problem
O'Hara, Patrick, Ramanujan, M. S., Damoulas, Theodoros
We introduce the Constrained Least-cost Tour (CLT) problem: given an undirected graph with weight and cost functions on the edges, minimise the total cost of a tour rooted at a start vertex such that the total weight lies within a given range. CLT is related to the family of Travelling Salesman Problems with Profits, but differs by defining the weight function on edges instead of vertices, and by requiring the total weight to be within a range instead of being at least some quota. We prove CLT is $\mathcal{NP}$-hard, even in the simple case when the input graph is a path. We derive an informative lower bound by relaxing the integrality of edges and propose a heuristic motivated by this relaxation. For the case that requires the tour to be a simple cycle, we develop two heuristics which exploit Suurballe's algorithm to find low-cost, weight-feasible cycles. We demonstrate our algorithms by addressing a real-world problem that affects urban populations: finding routes that minimise air pollution exposure for walking, running and cycling in the city of London.
Rigging Nearly Acyclic Tournaments Is Fixed-Parameter Tractable
Ramanujan, M. S. (Technische Universität Wien) | Szeider, Stefan (Technische Universität Wien)
Single-elimination tournaments (or knockout tournaments) are a popular format in sports competitions that is also widely used for decision making and elections. In this paper we study the algorithmic problem of manipulating the outcome of a tournament. More specifically, we study the problem of finding a seeding of the players such that a certain player wins the resulting tournament. The problem is known to be NP-hard in general. In this paper we present an algorithm for this problem that exploits structural restrictions on the tournament. More specifically, we establish that the problem is fixed-parameter tractable when parameterized by the size of a smallest feedback arc set of the tournament (interpreting the tournament as an oriented complete graph). This is a natural parameter because most problems on tournaments (including this one) are either trivial or easily solvable on acyclic tournaments, leading to the question — what about nearly acyclic tournaments or tournaments with a small feedback arc set? Our result significantly improves upon a recent algorithm by Aziz et al. (2014) whose running time is bounded by an exponential function where the size of a smallest feedback arc set appears in the exponent and the base is the number of players.
Going Beyond Primal Treewidth for (M)ILP
Ganian, Robert (Technische Universität Wien) | Ordyniak, Sebastian (Technische Universität Wien) | Ramanujan, M. S. (Technische Universität Wien)
Integer Linear Programming (ILP) and its mixed variant (MILP) are archetypical examples of NP-complete optimization problems which have a wide range of applications in various areas of artificial intelligence. However, we still lack a thorough understanding of which structural restrictions make these problems tractable. Here we focus on structure captured via so-called decompositional parameters, which have been highly successful in fields such as boolean satisfiability and constraint satisfaction but have not yet reached their full potential in the ILP setting. In particular, primal treewidth (an established decompositional parameter) can only be algorithmically exploited to solve ILP under restricted circumstances. Our main contribution is the introduction and algorithmic exploitation of two new decompositional parameters for ILP and MILP. The first, torso-width, is specifically tailored to the linear programming setting and is the first decompositional parameter which can also be used for MILP. The latter, incidence treewidth, is a concept which originates from boolean satisfiability but has not yet been used in the ILP setting; here we obtain a full complexity landscape mapping the precise conditions under which incidence treewidth can be used to obtain efficient algorithms. Both of these parameters overcome previous shortcomings of primal treewidth for ILP in unique ways, and consequently push the frontiers of tractability for these important problems.