Ramani, Karthik
AircraftVerse: A Large-Scale Multimodal Dataset of Aerial Vehicle Designs
Cobb, Adam D., Roy, Anirban, Elenius, Daniel, Heim, F. Michael, Swenson, Brian, Whittington, Sydney, Walker, James D., Bapty, Theodore, Hite, Joseph, Ramani, Karthik, McComb, Christopher, Jha, Susmit
We present AircraftVerse, a publicly available aerial vehicle design dataset. Aircraft design encompasses different physics domains and, hence, multiple modalities of representation. The evaluation of these cyber-physical system (CPS) designs requires the use of scientific analytical and simulation models ranging from computer-aided design tools for structural and manufacturing analysis, computational fluid dynamics tools for drag and lift computation, battery models for energy estimation, and simulation models for flight control and dynamics. AircraftVerse contains 27,714 diverse air vehicle designs - the largest corpus of engineering designs with this level of complexity. Each design comprises the following artifacts: a symbolic design tree describing topology, propulsion subsystem, battery subsystem, and other design details; a STandard for the Exchange of Product (STEP) model data; a 3D CAD design using a stereolithography (STL) file format; a 3D point cloud for the shape of the design; and evaluation results from high fidelity state-of-the-art physics models that characterize performance metrics such as maximum flight distance and hover-time. We also present baseline surrogate models that use different modalities of design representation to predict design performance metrics, which we provide as part of our dataset release. Finally, we discuss the potential impact of this dataset on the use of learning in aircraft design and, more generally, in CPS. AircraftVerse is accompanied by a data card, and it is released under Creative Commons Attribution-ShareAlike (CC BY-SA) license. The dataset is hosted at https://zenodo.org/record/6525446, baseline models and code at https://github.com/SRI-CSL/AircraftVerse, and the dataset description at https://aircraftverse.onrender.com/.
Deconvolving Feedback Loops in Recommender Systems
Sinha, Ayan, Gleich, David F., Ramani, Karthik
Collaborative filtering is a popular technique to infer users' preferences on new content based on the collective information of all users preferences. Recommender systems then use this information to make personalized suggestions to users. When users accept these recommendations it creates a feedback loop in the recommender system, and these loops iteratively influence the collaborative filtering algorithm's predictions over time. We investigate whether it is possible to identify items affected by these feedback loops. We state sufficient assumptions to deconvolve the feedback loops while keeping the inverse solution tractable. We furthermore develop a metric to unravel the recommender system's influence on the entire user-item rating matrix. We use this metric on synthetic and real-world datasets to (1) identify the extent to which the recommender system affects the final rating matrix, (2) rank frequently recommended items, and (3) distinguish whether a user's rated item was recommended or an intrinsic preference. Our results indicate that it is possible to recover the ratings matrix of intrinsic user preferences using a single snapshot of the ratings matrix without any temporal information.