Raman, Shreyas Sundara
{\lambda}: A Benchmark for Data-Efficiency in Long-Horizon Indoor Mobile Manipulation Robotics
Jaafar, Ahmed, Raman, Shreyas Sundara, Wei, Yichen, Harithas, Sudarshan, Juliani, Sofia, Wernerfelt, Anneke, Quartey, Benedict, Idrees, Ifrah, Liu, Jason Xinyu, Tellex, Stefanie
Efficiently learning and executing long-horizon mobile manipulation (MoMa) tasks is crucial for advancing robotics in household and workplace settings. However, current MoMa models are data-inefficient, underscoring the need for improved models that require realistic-sized benchmarks to evaluate their efficiency, which do not exist. To address this, we introduce the LAMBDA ({\lambda}) benchmark (Long-horizon Actions for Mobile-manipulation Benchmarking of Directed Activities), which evaluates the data efficiency of models on language-conditioned, long-horizon, multi-room, multi-floor, pick-and-place tasks using a dataset of manageable size, more feasible for collection. The benchmark includes 571 human-collected demonstrations that provide realism and diversity in simulated and real-world settings. Unlike planner-generated data, these trajectories offer natural variability and replay-verifiability, ensuring robust learning and evaluation. We benchmark several models, including learning-based models and a neuro-symbolic modular approach combining foundation models with task and motion planning. Learning-based models show suboptimal success rates, even when leveraging pretrained weights, underscoring significant data inefficiencies. However, the neuro-symbolic approach performs significantly better while being more data efficient. Findings highlight the need for more data-efficient learning-based MoMa approaches. {\lambda} addresses this gap by serving as a key benchmark for evaluating the data efficiency of those future models in handling household robotics tasks.
Categorizing the Visual Environment and Analyzing the Visual Attention of Dogs
Raman, Shreyas Sundara, Pelgrim, Madeline H., Buchsbaum, Daphna, Serre, Thomas
Dogs have a unique evolutionary relationship with humans and serve many important roles e.g. search and rescue, blind assistance, emotional support. However, few datasets exist to categorize visual features and objects available to dogs, as well as how dogs direct their visual attention within their environment. We collect and study a dataset with over 11,698 gazes to categorize the objects available to be gazed at by 11 dogs in everyday outdoor environments i.e. a walk around a college campus and urban area. We explore the availability of these object categories and the visual attention of dogs over these categories using a head mounted eye tracking apparatus. A small portion (approx. 600 images or < 20% of total dataset) of the collected data is used to fine tune a MaskRCNN for the novel image domain to segment objects present in the scene, enabling further statistical analysis on the visual gaze tendencies of dogs. The MaskRCNN, with eye tracking apparatus, serves as an end to end model for automatically classifying the visual fixations of dogs. The fine tuned MaskRCNN performs far better than chance. There are few individual differences between the 11 dogs and we observe greater visual fixations on buses, plants, pavement, and construction equipment. This work takes a step towards understanding visual behavior of dogs and their interaction with the physical world.
CAPE: Corrective Actions from Precondition Errors using Large Language Models
Raman, Shreyas Sundara, Cohen, Vanya, Paulius, David, Idrees, Ifrah, Rosen, Eric, Mooney, Ray, Tellex, Stefanie
Extracting commonsense knowledge from a large language model (LLM) offers a path to designing intelligent robots. Existing approaches that leverage LLMs for planning are unable to recover when an action fails and often resort to retrying failed actions, without resolving the error's underlying cause. We propose a novel approach (CAPE) that attempts to propose corrective actions to resolve precondition errors during planning. CAPE improves the quality of generated plans by leveraging few-shot reasoning from action preconditions. Our approach enables embodied agents to execute more tasks than baseline methods while ensuring semantic correctness and minimizing re-prompting. In VirtualHome, CAPE generates executable plans while improving a human-annotated plan correctness metric from 28.89% to 49.63% over SayCan. Our improvements transfer to a Boston Dynamics Spot robot initialized with a set of skills (specified in language) and associated preconditions, where CAPE improves the correctness metric of the executed task plans by 76.49% compared to SayCan. Our approach enables the robot to follow natural language commands and robustly recover from failures, which baseline approaches largely cannot resolve or address inefficiently.