Ram, Ashwin


Reports of the AAAI 2010 Conference Workshops

AI Magazine

The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.


AAAI 1994 Spring Symposium Series Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence (AAAI) held its 1994 Spring Symposium Series on 19-23 March at Stanford University, Stanford, California. This article contains summaries of 10 of the 11 symposia that were conducted: Applications of Computer Vision in Medical Image Processing; AI in Medicine: Interpreting Clinical Data; Believable Agents; Computational Organization Design; Decision-Theoretic Planning; Detecting and Resolving Errors in Manufacturing Systems; Goal-Driven Learning; Intelligent Multimedia, Multimodal Systems; Software Agents; and Toward Physical Interaction and Manipulation. Papers of most of the symposia are available as technical reports from AAAI.


Goal-Driven Learning: Fundamental Issues: A Symposium Report

AI Magazine

In AI, psychology, and education, a growing body of research supports the view that learning is a goal-directed process. Psychological experiments show that people with varying goals process information differently, studies in education show that goals have a strong effect on what students learn, and functional arguments in machine learning support the necessity of goal-based focusing of learner effort. At the Fourteenth Annual Conference of the Cognitive Science Society, a symposium brought together researchers in AI, psychology, and education to discuss goal-driven learning. This article presents the fundamental points illuminated at the symposium, placing them in the context of open questions and current research directions in goal-driven learning.