Goto

Collaborating Authors

 Ram, Ashwin


CrediRAG: Network-Augmented Credibility-Based Retrieval for Misinformation Detection in Reddit

arXiv.org Artificial Intelligence

Fake news threatens democracy and exacerbates the polarization and divisions in society; therefore, accurately detecting online misinformation is the foundation of addressing this issue. We present CrediRAG, the first fake news detection model that combines language models with access to a rich external political knowledge base with a dense social network to detect fake news across social media at scale. CrediRAG uses a news retriever to initially assign a misinformation score to each post based on the source credibility of similar news articles to the post title content. CrediRAG then improves the initial retrieval estimations through a novel weighted post-to-post network connected based on shared commenters and weighted by the average stance of all shared commenters across every pair of posts. We achieve 11% increase in the F1-score in detecting misinformative posts over state-of-the-art methods. Extensive experiments conducted on curated real-world Reddit data of over 200,000 posts demonstrate the superior performance of CrediRAG on existing baselines. Thus, our approach offers a more accurate and scalable solution to combat the spread of fake news across social media platforms.


Annotating sleep states in children from wrist-worn accelerometer data using Machine Learning

arXiv.org Artificial Intelligence

Sleep detection and annotation are crucial for researchers to understand sleep patterns, especially in children. With modern wrist-worn watches comprising built-in accelerometers, sleep logs can be collected. However, the annotation of these logs into distinct sleep events: onset and wakeup, proves to be challenging. These annotations must be automated, precise, and scalable. We propose to model the accelerometer data using different machine learning (ML) techniques such as support vectors, boosting, ensemble methods, and more complex approaches involving LSTMs and Region-based CNNs. Later, we aim to evaluate these approaches using the Event Detection Average Precision (EDAP) score (similar to the IOU metric) to eventually compare the predictive power and model performance.


Analysis, Identification and Prediction of Parkinson's disease sub-types and progression through Machine Learning

arXiv.org Artificial Intelligence

Parkinson's disease (PD) is a prevalent neurodegenerative disorder with varying patient trajectories, yet little is understood about the underlying causes and symptom progression. The Parkinson's Progression Markers Initiative (PPMI) has collected comprehensive longitudinal data from diverse patient cohorts to identify biomarkers and aid in the development of interventions. Despite over 110 machine learning studies using the PPMI database, the majority have focused on supervised models for diagnosis prediction, which has limited impact on understanding patient variability and progression. This paper addresses this gap by combining supervised and unsupervised machine learning methods to identify subtypes that accurately predict disease progression in Parkinson's patients. Building upon previous work, we replicate and extend the study by integrating unsupervised patient clustering and prediction of present and future symptoms using 5 additional years of longitudinal data from the Progressive Parkinson's Markers Initiative (PPMI) database. Our findings demonstrate accurate prediction of disease trajectories and symptoms at baseline, offering valuable insights into patient heterogeneity and the potential for personalized interventions. The integration of supervised and unsupervised models presents a promising avenue for uncovering latent subgroups and understanding the complexity of Parkinson's disease progression.


On Evaluating and Comparing Open Domain Dialog Systems

arXiv.org Artificial Intelligence

Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million dollar university competition where sixteen selected university teams built conversational agents to deliver the best social conversational experience. Alexa Prize provided the academic community with the unique opportunity to perform research with a live system used by millions of users. The subjectivity associated with evaluating conversations is key element underlying the challenge of building non-goal oriented dialogue systems. In this paper, we propose a comprehensive evaluation strategy with multiple metrics designed to reduce subjectivity by selecting metrics which correlate well with human judgement. The proposed metrics provide granular analysis of the conversational agents, which is not captured in human ratings. We show that these metrics can be used as a reasonable proxy for human judgment. We provide a mechanism to unify the metrics for selecting the top performing agents, which has also been applied throughout the Alexa Prize competition. To our knowledge, to date it is the largest setting for evaluating agents with millions of conversations and hundreds of thousands of ratings from users. We believe that this work is a step towards an automatic evaluation process for conversational AIs.


Alexa Prize โ€” State of the Art in Conversational AI

AI Magazine

Eighteen teams were selected for the inaugural competition last year. To build their socialbots, the students combined state-of-the-art techniques with their own novel strategies in the areas of natural language understanding and conversational AI. This article reports on the research conducted over the 2017-2018 year. While the 20-minute grand challenge was not achieved in the first year, the competition produced several conversational agents that advanced the state of the art, that are interesting for everyday users to interact with, and that help form a baseline for the second year of the competition. We conclude with a summary of the human conversation have applicability in both work that we plan to address in the second year of professional and everyday domains. The first generation of such assistants -- Amazon's Alexa, Apple's Siri, Google The Alexa Prize competition received hundreds of Assistant, and Microsoft's Cortana -- have been applications from interested universities. After a focused on short, task-oriented interactions, such as detailed review of the applications, Amazon playing music or answering simple questions, as announced 12 sponsored and 6 unsponsored teams opposed to the longer free-form conversations that as the inaugural cohort for the Alexa Prize. The teams occur naturally in social and professional human that went live for the 2017 competition, listed alphabetically interaction. Conversational AI is the study of techniques by university, were DeisBot (Brandeis University), for creating software agents that can engage Magnus (Carnegie Mellon University), in natural conversational interactions with humans.


Learning from Demonstration to Be a Good Team Member in a Role Playing Game

AAAI Conferences

We present an approach that uses learning from demonstration in a computer role playing game to create a controller for a companion team member. We describe a behavior engine that uses case-based reasoning. The behavior engine accepts observation traces of human playing decisions and produces a sequence of actions which can then be carried out by an artificial agent within the gaming environment. Our work focuses on team-based role playing games, where the agents produced by the behavior engine act as team members within a mixed human-agent team. We present the results of a study we conducted, where we assess both the quantitative and qualitative performance difference between human-only teams compared with hybrid human-agent teams. The results of our study show that human-agent teams were more successful at task completion and, for some qualitative dimensions, hybrid teams were perceived more favorably than human-only teams.


Robust and Authorable Multiplayer Storytelling Experiences

AAAI Conferences

Interactive narrative systems attempt to tell stories to players capable of changing the direction and/or outcome of the story. Despite the growing importance of multiplayer social experiences in games, little research has focused on multiplayer interactive narrative experiences. We performed a preliminary study to determine how human directors design and execute multiplayer interactive story experiences in online and real world environments. Based on our observations, we developed the Multiplayer Storytelling Engine that manages a story world at the individual and group levels. Our flexible story representation enables human authors to naturally model multiplayer narrative experiences. An intelligent execution algorithm detects when the author's story representation fails to account for player behaviors and automatically generates a branch to restore the story to the authors' original intent, thus balancing authorability against robust multiplayer execution.


Learning Opponent Strategies through First Order Induction

AAAI Conferences

In a competitive game it is important to identify the opponent's strategy as quickly and accurately as possible so that an effective response can be planned. In this vein, this paper summarizes our work in exploring using first order inductive learning to learn rules for representing opponent strategies. Specifically, we use these learned rules to perform plan recognition and classify an opponent strategy as one of multiple learned strategies. Our experiments validate this novel approach in a simple real-time strategy game.


Socio-Semantic Health Information Access

AAAI Conferences

We describe Cobot, a mixed initiative socio-semantic conversational search and recommendation system for finding health information. With Cobot, users can start a real time conversation about their health concerns. Cobot then connects relevant users together in the conversation also providing contextual recommendations relevant to the conversation. Conventional search engines and content portals provide a solitary search experience inundating the health information seeker with a hoard of information often confusing and frustrating them. Cobot brings relevant healthcare information directly or through other users without any search through natural language conversation.


CBArch: A Case-Based Reasoning Framework for Conceptual Design of Commercial Buildings

AAAI Conferences

The paper describes the first phase of development of a Case-Base Reasoning (CBR) system to support early conceptual design of buildings. As specific context of application, the research focuses on energy performance of commercial buildings, and the early identification of energy-related features that contribute to its outcomes. The hypothesis is that bringing knowledge from relevant precedents may facilitate this identification process, thus offering a significant contribution for early analysis and decision-making. The paper introduces a proof-of-concept for such a system, proposing a novel integration of Case-Based Reasoning, Parametric Modeling (Building Information Modeling), and Ontology Classification. Potential advantages and limitations of this three-level integration approach are discussed along with recommendations for future development.