Goto

Collaborating Authors

 Rakin, Adnan Siraj


DNN-Defender: An in-DRAM Deep Neural Network Defense Mechanism for Adversarial Weight Attack

arXiv.org Artificial Intelligence

With deep learning deployed in many security-sensitive areas, machine learning security is becoming progressively important. Recent studies demonstrate attackers can exploit system-level techniques exploiting the RowHammer vulnerability of DRAM to deterministically and precisely flip bits in Deep Neural Networks (DNN) model weights to affect inference accuracy. The existing defense mechanisms are software-based, such as weight reconstruction requiring expensive training overhead or performance degradation. On the other hand, generic hardware-based victim-/aggressor-focused mechanisms impose expensive hardware overheads and preserve the spatial connection between victim and aggressor rows. In this paper, we present the first DRAM-based victim-focused defense mechanism tailored for quantized DNNs, named DNN-Defender that leverages the potential of in-DRAM swapping to withstand the targeted bit-flip attacks. Our results indicate that DNN-Defender can deliver a high level of protection downgrading the performance of targeted RowHammer attacks to a random attack level. In addition, the proposed defense has no accuracy drop on CIFAR-10 and ImageNet datasets without requiring any software training or incurring additional hardware overhead.


Model Extraction Attacks on Split Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is a popular collaborative learning scheme involving multiple clients and a server. FL focuses on protecting clients' data but turns out to be highly vulnerable to Intellectual Property (IP) threats. Since FL periodically collects and distributes the model parameters, a free-rider can download the latest model and thus steal model IP. Split Federated Learning (SFL), a recent variant of FL that supports training with resource-constrained clients, splits the model into two, giving one part of the model to clients (client-side model), and the remaining part to the server (server-side model). Thus SFL prevents model leakage by design. Moreover, by blocking prediction queries, it can be made resistant to advanced IP threats such as traditional Model Extraction (ME) attacks. While SFL is better than FL in terms of providing IP protection, it is still vulnerable. In this paper, we expose the vulnerability of SFL and show how malicious clients can launch ME attacks by querying the gradient information from the server side. We propose five variants of ME attack which differs in the gradient usage as well as in the data assumptions. We show that under practical cases, the proposed ME attacks work exceptionally well for SFL. For instance, when the server-side model has five layers, our proposed ME attack can achieve over 90% accuracy with less than 2% accuracy degradation with VGG-11 on CIFAR-10.


DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories

arXiv.org Artificial Intelligence

Recent advancements of Deep Neural Networks (DNNs) have seen widespread deployment in multiple security-sensitive domains. The need of resource-intensive training and use of valuable domain-specific training data have made these models a top intellectual property (IP) for model owners. One of the major threats to the DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. Recent studies show hardware-based side channel attacks can reveal internal knowledge about DNN models (e.g., model architectures) However, to date, existing attacks cannot extract detailed model parameters (e.g., weights/biases). In this work, for the first time, we propose an advanced model extraction attack framework DeepSteal that effectively steals DNN weights with the aid of memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer based hardware fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailed for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate this substitute model extraction method on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNet/VGG-11). The extracted substitute model has successfully achieved more than 90 % test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model.


T-BFA: Targeted Bit-Flip Adversarial Weight Attack

arXiv.org Machine Learning

Traditional Deep Neural Network (DNN) security is mostly related to the well-known adversarial input example attack. Recently, another dimension of adversarial attack, namely, attack on DNN weight parameters, has been shown to be very powerful. As a representative one, the Bit-Flip based adversarial weight Attack(BFA) injects an extremely small amount of fault into weight parameters to hijack the DNN function. Prior works on BFA are focused on-targeted attacks that can classify all inputs into a random output class by flipping a very small number of weight bits stored in computer memory. This paper proposes the first work oftargetedBFA based (T-BFA) adversarial weight attack on DNN models, which can intentionally mislead selected inputs to a target output class. The objectives achieved by identifying the weight bits that are highly associated with the classification of a targeted output through a novel class-dependent weight bit ranking algorithm. T-BFA performance has been successfully demonstrated on multiple network architectures for the image classification task. For example, by merely flipping 27 out of 88 million weight bits, T-BFA can misclassify all the imagesfrom 'Ibex' class into 'Proboscis Monkey' class (i.e., 100% attack success rate)in ImageNet dataset, while maintaining 59.35% validation accuracy on ResNet-18. Moreover, we successfully demonstrate our T-BFA attack in a real computer prototype system running DNN computation.


Robust Machine Learning via Privacy/Rate-Distortion Theory

arXiv.org Machine Learning

Robust machine learning formulations have emerged to address the prevalent vulnerability of deep neural networks to adversarial examples. Our work draws the connection between optimal robust learning and the privacy-utility tradeoff problem, which is a generalization of the rate-distortion problem. The saddle point of the game between a robust classifier and an adversarial perturbation can be found via the solution of a maximum conditional entropy problem. This information-theoretic perspective sheds light on the fundamental tradeoff between robustness and clean data performance, which ultimately arises from the geometric structure of the underlying data distribution and perturbation constraints. Further, we show that under mild conditions, the worst case adversarial distribution with Wasserstein-ball constraints on the perturbation has a fixed point characterization. This is obtained via the first order necessary conditions for optimality of the derived maximum conditional entropy problem. This fixed point characterization exposes the interplay between the geometry of the ground cost in the Wasserstein-ball constraint, the worst-case adversarial distribution, and the given reference data distribution.


Blind Pre-Processing: A Robust Defense Method Against Adversarial Examples

arXiv.org Machine Learning

Deep learning algorithms and networks are vulnerable to perturbed inputs which is known as the adversarial attack. Many defense methodologies have been investigated to defend against such adversarial attack. In this work, we propose a novel methodology to defend the existing powerful attack model. We for the first time introduce a new attacking scheme for the attacker and set a practical constraint for white box attack. Under this proposed attacking scheme, we present the best defense ever reported against some of the recent strong attacks. It consists of a set of nonlinear function to process the input data which will make it more robust over the adversarial attack. However, we make this processing layer completely hidden from the attacker. Blind pre-processing improves the white box attack accuracy of MNIST from 94.3\% to 98.7\%. Even with increasing defense when others defenses completely fail, blind pre-processing remains one of the strongest ever reported. Another strength of our defense is that it eliminates the need for adversarial training as it can significantly increase the MNIST accuracy without adversarial training as well. Additionally, blind pre-processing can also increase the inference accuracy in the face of a powerful attack on CIFAR-10 and SVHN data set as well without much sacrificing clean data accuracy.