Goto

Collaborating Authors

 Rakhimov, Ruslan


T-3DGS: Removing Transient Objects for 3D Scene Reconstruction

arXiv.org Artificial Intelligence

We propose a novel framework to remove transient objects from input videos for 3D scene reconstruction using Gaussian Splatting. Our framework consists of the following steps. In the first step, we propose an unsupervised training strategy for a classification network to distinguish between transient objects and static scene parts based on their different training behavior inside the 3D Gaussian Splatting reconstruction. In the second step, we improve the boundary quality and stability of the detected transients by combining our results from the first step with an off-the-shelf segmentation method. We also propose a simple and effective strategy to track objects in the input video forward and backward in time. Our results show an improvement over the current state of the art in existing sparsely captured datasets and significant improvements in a newly proposed densely captured (video) dataset. More results and code are available at https://transient-3dgs.github.io.


GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization

arXiv.org Artificial Intelligence

Although various visual localization approaches exist, such as scene coordinate and pose regression, these methods often struggle with high memory consumption or extensive optimization requirements. To address these challenges, we utilize recent advancements in novel view synthesis, particularly 3D Gaussian Splatting (3DGS), to enhance localization. 3DGS allows for the compact encoding of both 3D geometry and scene appearance with its spatial features. Our method leverages the dense description maps produced by XFeat's lightweight keypoint detection and description model. We propose distilling these dense keypoint descriptors into 3DGS to improve the model's spatial understanding, leading to more accurate camera pose predictions through 2D-3D correspondences. After estimating an initial pose, we refine it using a photometric warping loss. Benchmarking on popular indoor and outdoor datasets shows that our approach surpasses state-of-the-art Neural Render Pose (NRP) methods, including NeRFMatch and PNeRFLoc.


Multi-sensor large-scale dataset for multi-view 3D reconstruction

arXiv.org Artificial Intelligence

We present a new multi-sensor dataset for multi-view 3D surface reconstruction. It includes registered RGB and depth data from sensors of different resolutions and modalities: smartphones, Intel RealSense, Microsoft Kinect, industrial cameras, and structured-light scanner. The scenes are selected to emphasize a diverse set of material properties challenging for existing algorithms. We provide around 1.4 million images of 107 different scenes acquired from 100 viewing directions under 14 lighting conditions. We expect our dataset will be useful for evaluation and training of 3D reconstruction algorithms and for related tasks. The dataset is available at skoltech3d.appliedai.tech.