Goto

Collaborating Authors

 Rajput, Kishansingh


Evaluating DTW Measures via a Synthesis Framework for Time-Series Data

arXiv.org Artificial Intelligence

Time-series data originate from various applications that describe specific observations or quantities of interest over time. Their analysis often involves the comparison across different time-series data sequences, which in turn requires the alignment of these sequences. Dynamic Time Warping (DTW) is the standard approach to achieve an optimal alignment between two temporal signals. Different variations of DTW have been proposed to address various needs for signal alignment or classifications. However, a comprehensive evaluation of their performance in these time-series data processing tasks is lacking. Most DTW measures perform well on certain types of time-series data without a clear explanation of the reason. To address that, we propose a synthesis framework to model the variation between two time-series data sequences for comparison. Our synthesis framework can produce a realistic initial signal and deform it with controllable variations that mimic real-world scenarios. With this synthesis framework, we produce a large number of time-series sequence pairs with different but known variations, which are used to assess the performance of a number of well-known DTW measures for the tasks of alignment and classification. We report their performance on different variations and suggest the proper DTW measure to use based on the type of variations between two time-series sequences. This is the first time such a guideline is presented for selecting a proper DTW measure. To validate our conclusion, we apply our findings to real-world applications, i.e., the detection of the formation top for the oil and gas industry and the pattern search in streamlines for flow visualization.


Uncertainty Aware Deep Learning for Particle Accelerators

arXiv.org Artificial Intelligence

Standard deep learning models for classification and regression applications are ideal for capturing complex system dynamics. However, their predictions can be arbitrarily inaccurate when the input samples are not similar to the training data. Implementation of distance aware uncertainty estimation can be used to detect these scenarios and provide a level of confidence associated with their predictions. In this paper, we present results from using Deep Gaussian Process Approximation (DGPA) methods for errant beam prediction at Spallation Neutron Source (SNS) accelerator (classification) and we provide an uncertainty aware surrogate model for the Fermi National Accelerator Lab (FNAL) Booster Accelerator Complex (regression).


Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions

arXiv.org Artificial Intelligence

Providing accurate uncertainty estimations is essential for producing reliable machine learning models, especially in safety-critical applications such as accelerator systems. Gaussian process models are generally regarded as the gold standard method for this task, but they can struggle with large, high-dimensional datasets. Combining deep neural networks with Gaussian process approximation techniques have shown promising results, but dimensionality reduction through standard deep neural network layers is not guaranteed to maintain the distance information necessary for Gaussian process models. We build on previous work by comparing the use of the singular value decomposition against a spectral-normalized dense layer as a feature extractor for a deep neural Gaussian process approximation model and apply it to a capacitance prediction problem for the High Voltage Converter Modulators in the Oak Ridge Spallation Neutron Source. Our model shows improved distance preservation and predicts in-distribution capacitance values with less than 1% error.


Multi-module based CVAE to predict HVCM faults in the SNS accelerator

arXiv.org Artificial Intelligence

We present a multi-module framework based on Conditional Variational Autoencoder (CVAE) to detect anomalies in the power signals coming from multiple High Voltage Converter Modulators (HVCMs). We condition the model with the specific modulator type to capture different representations of the normal waveforms and to improve the sensitivity of the model to identify a specific type of fault when we have limited samples for a given module type. We studied several neural network (NN) architectures for our CVAE model and evaluated the model performance by looking at their loss landscape for stability and generalization. Our results for the Spallation Neutron Source (SNS) experimental data show that the trained model generalizes well to detecting multiple fault types for several HVCM module types. The results of this study can be used to improve the HVCM reliability and overall SNS uptime


Uncertainty aware anomaly detection to predict errant beam pulses in the SNS accelerator

arXiv.org Artificial Intelligence

High-power particle accelerators are complex machines with thousands of pieces of equipmentthat are frequently running at the cutting edge of technology. In order to improve the day-to-dayoperations and maximize the delivery of the science, new analytical techniques are being exploredfor anomaly detection, classification, and prognostications. As such, we describe the applicationof an uncertainty aware Machine Learning method, the Siamese neural network model, to predictupcoming errant beam pulses using the data from a single monitoring device. By predicting theupcoming failure, we can stop the accelerator before damage occurs. We describe the acceleratoroperation, related Machine Learning research, the prediction performance required to abort beamwhile maintaining operations, the monitoring device and its data, and the Siamese method andits results. These results show that the researched method can be applied to improve acceleratoroperations.