Goto

Collaborating Authors

 Raitoharju, Jenni


Convolutional autoencoder-based multimodal one-class classification

arXiv.org Artificial Intelligence

One-class classification refers to approaches of learning using data from a single class only. In this paper, we propose a deep learning one-class classification method suitable for multimodal data, which relies on two convolutional autoencoders jointly trained to reconstruct the positive input data while obtaining the data representations in the latent space as compact as possible. During inference, the distance of the latent representation of an input to the origin can be used as an anomaly score. Experimental results using a multimodal macroinvertebrate image classification dataset show that the proposed multimodal method yields better results as compared to the unimodal approach. Furthermore, study the effect of different input image sizes, and we investigate how recently proposed feature diversity regularizers affect the performance of our approach. We show that such regularizers improve performance.


Learning distinct features helps, provably

arXiv.org Artificial Intelligence

We study the diversity of the features learned by a two-layer neural network trained with the least squares loss. We measure the diversity by the average $L_2$-distance between the hidden-layer features and theoretically investigate how learning non-redundant distinct features affects the performance of the network. To do so, we derive novel generalization bounds depending on feature diversity based on Rademacher complexity for such networks. Our analysis proves that more distinct features at the network's units within the hidden layer lead to better generalization. We also show how to extend our results to deeper networks and different losses.


On Feature Diversity in Energy-based Models

arXiv.org Artificial Intelligence

Energy-based learning is a powerful learning paradigm that encapsulates various discriminative and generative approaches. An energy-based model (EBM) is typically formed of inner-model(s) that learn a combination of the different features to generate an energy mapping for each input configuration. In this paper, we focus on the diversity of the produced feature set. We extend the probably approximately correct (PAC) theory of EBMs and analyze the effect of redundancy reduction on the performance of EBMs. We derive generalization bounds for various learning contexts, i.e., regression, classification, and implicit regression, with different energy functions and we show that indeed reducing redundancy of the feature set can consistently decrease the gap between the true and empirical expectation of the energy and boosts the performance of the model.


WLD-Reg: A Data-dependent Within-layer Diversity Regularizer

arXiv.org Artificial Intelligence

Neural networks are composed of multiple layers arranged in a hierarchical structure jointly trained with a gradient-based optimization, where the errors are back-propagated from the last layer back to the first one. At each optimization step, neurons at a given layer receive feedback from neurons belonging to higher layers of the hierarchy. In this paper, we propose to complement this traditional 'between-layer' feedback with additional 'within-layer' feedback to encourage the diversity of the activations within the same layer. To this end, we measure the pairwise similarity between the outputs of the neurons and use it to model the layer's overall diversity. We present an extensive empirical study confirming that the proposed approach enhances the performance of several state-of-the-art neural network models in multiple tasks. The code is publically available at \url{https://github.com/firasl/AAAI-23-WLD-Reg}


1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

arXiv.org Artificial Intelligence

The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.


Graph-Embedded Subspace Support Vector Data Description

arXiv.org Artificial Intelligence

In this paper, we propose a novel subspace learning framework for one-class classification. The proposed framework presents the problem in the form of graph embedding. It includes the previously proposed subspace one-class techniques as its special cases and provides further insight on what these techniques actually optimize. The framework allows to incorporate other meaningful optimization goals via the graph preserving criterion and reveals a spectral solution and a spectral regression-based solution as alternatives to the previously used gradient-based technique. We combine the subspace learning framework iteratively with Support Vector Data Description applied in the subspace to formulate Graph-Embedded Subspace Support Vector Data Description. We experimentally analyzed the performance of newly proposed different variants. We demonstrate improved performance against the baselines and the recently proposed subspace learning methods for one-class classification.


Non-Linear Spectral Dimensionality Reduction Under Uncertainty

arXiv.org Artificial Intelligence

In this paper, we consider the problem of non-linear dimensionality reduction under uncertainty, both from a theoretical and algorithmic perspectives. Since real-world data usually contain measurements with uncertainties and artifacts, the input space in the proposed framework consists of probability distributions to model the uncertainties associated with each sample. We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches, e.g., KPCA, MDA/KMFA, to receive as inputs the probability distributions instead of the original data. We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework. Empirical results on different datasets show the effectiveness of the proposed framework.


Graph Embedding with Data Uncertainty

arXiv.org Artificial Intelligence

However, the impracticability of working in high dimensional spaces due to the curse of dimensionality and the realization that the data in many problems reside on manifolds with much lower dimensions than those of the original space, has led to the development of spectral-based subspace learning (SL) techniques. Spectral-based methods rely on the eigenanalysis of Scatter matrices. SL aims at determining a mapping of the original high-dimensional space into a lower-dimensional space preserving properties of interest in the input data. This mapping can be obtained using unsupervised methods, such as Principal Component Analysis (PCA) [1, 2], or supervised ones, such as Linear Discriminant Analysis (LDA) [3] and Marginal Fisher Analysis (MFA) [4]. Despite the different motivations of these spectral-based methods, a general formulation known as Graph Embedding was introduced in [4] to unify them within a common framework. For low-dimensional data, where dimensionality reduction is not needed and classification algorithms can be applied directly, many extensions modeling input data inaccuracies have recently been proposed [5, 6].


Ellipsoidal Subspace Support Vector Data Description

arXiv.org Artificial Intelligence

In this paper, we propose a novel method for transforming data into a low-dimensional space optimized for one-class classification. The proposed method iteratively transforms data into a new subspace optimized for ellipsoidal encapsulation of target class data. We provide both linear and non-linear formulations for the proposed method. The method takes into account the covariance of the data in the subspace; hence, it yields a more generalized solution as compared to Subspace Support Vector Data Description for a hypersphere. We propose different regularization terms expressing the class variance in the projected space. We compare the results with classic and recently proposed one-class classification methods and achieve better results in the majority of cases. The proposed method is also noticed to converge much faster than recently proposed Subspace Support Vector Data Description.


Architecture Search by Estimation of Network Structure Distributions

arXiv.org Artificial Intelligence

The influence of deep learning is continuously expanding across different domains, and its new applications are ubiquitous. The question of neural network design thus increases in importance, as traditional empirical approaches are reaching their limits. Manual design of network architectures from scratch relies heavily on trial and error, while using existing pretrained models can introduce redundancies or vulnerabilities. Automated neural architecture design is able to overcome these problems, but the most successful algorithms operate on significantly constrained design spaces, assuming the target network to consist of identical repeating blocks. We propose a probabilistic representation of a neural network structure under the assumption of independence between layer types. The probability matrix (prototype) can describe general feedforward architectures and is equivalent to the population of models, while being simple to interpret and analyze. We construct an architecture search algorithm, inspired by the estimation of distribution algorithms, to take advantage of this representation. The probability matrix is tuned towards generating high-performance models by repeatedly sampling the architectures and evaluating the corresponding networks. Our algorithm is shown to discover models which are competitive with those produced by existing architecture search methods, both in accuracy and computational costs, despite the conceptual simplicity and the comparatively limited scope of achievable designs.