Goto

Collaborating Authors

 Rainforth, Tom


Shh, don't say that! Domain Certification in LLMs

arXiv.org Machine Learning

Large language models (LLMs) are often deployed to perform constrained tasks, with narrow domains. For example, customer support bots can be built on top of LLMs, relying on their broad language understanding and capabilities to enhance performance. However, these LLMs are adversarially susceptible, potentially generating outputs outside the intended domain. To formalize, assess, and mitigate this risk, we introduce domain certification; a guarantee that accurately characterizes the out-of-domain behavior of language models. We then propose a simple yet effective approach, which we call VALID that provides adversarial bounds as a certificate. Finally, we evaluate our method across a diverse set of datasets, demonstrating that it yields meaningful certificates, which bound the probability of out-of-domain samples tightly with minimum penalty to refusal behavior.


Rethinking Aleatoric and Epistemic Uncertainty

arXiv.org Machine Learning

The ideas of aleatoric and epistemic uncertainty are widely used to reason about the probabilistic predictions of machine-learning models. We identify incoherence in existing discussions of these ideas and suggest this stems from the aleatoric-epistemic view being insufficiently expressive to capture all of the distinct quantities that researchers are interested in. To explain and address this we derive a simple delineation of different model-based uncertainties and the data-generating processes associated with training and evaluation. Using this in place of the aleatoric-epistemic view could produce clearer discourse as the field moves forward.


Making Better Use of Unlabelled Data in Bayesian Active Learning

arXiv.org Machine Learning

Fully supervised models are predominant in Bayesian active learning. We argue that their neglect of the information present in unlabelled data harms not just predictive performance but also decisions about what data to acquire. Our proposed solution is a simple framework for semi-supervised Bayesian active learning. We find it produces better-performing models than either conventional Bayesian active learning or semi-supervised learning with randomly acquired data. It is also easier to scale up than the conventional approach. As well as supporting a shift towards semi-supervised models, our findings highlight the importance of studying models and acquisition methods in conjunction.


Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design

arXiv.org Artificial Intelligence

Combining discrete and continuous data is an important capability for generative models. We present Discrete Flow Models (DFMs), a new flow-based model of discrete data that provides the missing link in enabling flow-based generative models to be applied to multimodal continuous and discrete data problems. Our key insight is that the discrete equivalent of continuous space flow matching can be realized using Continuous Time Markov Chains. DFMs benefit from a simple derivation that includes discrete diffusion models as a specific instance while allowing improved performance over existing diffusion-based approaches. We utilize our DFMs method to build a multimodal flow-based modeling framework. We apply this capability to the task of protein co-design, wherein we learn a model for jointly generating protein structure and sequence. Our approach achieves state-of-the-art co-design performance while allowing the same multimodal model to be used for flexible generation of the sequence or structure.


On the Expected Size of Conformal Prediction Sets

arXiv.org Machine Learning

While conformal predictors reap the benefits of rigorous statistical guarantees on their error frequency, the size of their corresponding prediction sets is critical to their practical utility. Unfortunately, there is currently a lack of finite-sample analysis and guarantees for their prediction set sizes. To address this shortfall, we theoretically quantify the expected size of the prediction sets under the split conformal prediction framework. As this precise formulation cannot usually be calculated directly, we further derive point estimates and high-probability interval bounds that can be empirically computed, providing a practical method for characterizing the expected set size. We corroborate the efficacy of our results with experiments on real-world datasets for both regression and classification problems.


Trans-Dimensional Generative Modeling via Jump Diffusion Models

arXiv.org Machine Learning

We propose a new class of generative models that naturally handle data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.


Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support

arXiv.org Artificial Intelligence

The posterior in probabilistic programs with stochastic support decomposes as a weighted sum of the local posterior distributions associated with each possible program path. We show that making predictions with this full posterior implicitly performs a Bayesian model averaging (BMA) over paths. This is potentially problematic, as model misspecification can cause the BMA weights to prematurely collapse onto a single path, leading to sub-optimal predictions in turn. To remedy this issue, we propose alternative mechanisms for path weighting: one based on stacking and one based on ideas from PAC-Bayes. We show how both can be implemented as a cheap post-processing step on top of existing inference engines. In our experiments, we find them to be more robust and lead to better predictions compared to the default BMA weights.


SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step Reasoning

arXiv.org Artificial Intelligence

The recent progress in large language models (LLMs), especially the invention of chain-of-thought prompting, has made it possible to automatically answer questions by stepwise reasoning. However, when faced with more complicated problems that require non-linear thinking, even the strongest LLMs make mistakes. To address this, we explore whether LLMs are able to recognize errors in their own step-bystep reasoning, without resorting to external resources. To this end, we propose SelfCheck, a general-purpose zero-shot verification schema for recognizing such errors. We then use the results of these checks to improve question-answering performance by conducting weighted voting on multiple solutions to the question. We test SelfCheck on three datasets--GSM8K, MathQA, and MATH--and find that it successfully recognizes errors and, in turn, increases final answer accuracies. Recent years have witnessed dramatic changes in the areas of NLP and AI brought on by significant advances in LLMs. From GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022), Llama (Touvron et al., 2023) and Falcon (Almazrouei et al., 2023) to GPT-4 (OpenAI, 2023) and PaLM-2 (Google, 2023), the increasing model sizes and exploding amount of training data have empowered LLMs to achieve human-level performance on a large range of tasks, including summarization, translation, and question answering. The invention of Chain-of-Thought prompting (CoT, Wei et al. (2022)) has further enhanced LLMs' ability to solve complex problems by generating step-by-step solutions. However, the performance of even the largest LLMs is still unsatisfactory on more difficult reasoning problems. For example, GPT-4 with CoT prompting only correctly answers 42.5% of problems in the MATH dataset (Bubeck et al., 2023; Hendrycks et al., 2021), which is far below human level. Such problems require careful and extensive multi-step reasoning to solve, and LLMs are consequently prone to make mistakes: even though their error rate on individual steps may be low, the probability of generating at least one erroneous step can still be quite high, undermining the final answer. Recent works have tried to overcome this limitation by checking for errors in these step-by-step solutions (Cobbe et al., 2021; Li et al., 2022; Ling et al., 2023).


In-Context Learning Learns Label Relationships but Is Not Conventional Learning

arXiv.org Artificial Intelligence

The predictions of Large Language Models (LLMs) on downstream tasks often improve significantly when including examples of the input--label relationship in the context. However, there is currently no consensus about how this in-context learning (ICL) ability of LLMs works. For example, while Xie et al. (2021) liken ICL to a general-purpose learning algorithm, Min et al. (2022) argue ICL does not even learn label relationships from in-context examples. In this paper, we provide novel insights into how ICL leverages label information, revealing both capabilities and limitations. To ensure we obtain a comprehensive picture of ICL behavior, we study probabilistic aspects of ICL predictions and thoroughly examine the dynamics of ICL as more examples are provided. Our experiments show that ICL predictions almost always depend on in-context labels, and that ICL can learn truly novel tasks in-context. However, we also find that ICL struggles to fully overcome prediction preferences acquired from pre-training data, and, further, that ICL does not consider all in-context information equally.


CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design

arXiv.org Artificial Intelligence

We formalize the problem of contextual optimization through the lens of Bayesian experimental design and propose CO-BED -- a general, model-agnostic framework for designing contextual experiments using information-theoretic principles. After formulating a suitable information-based objective, we employ black-box variational methods to simultaneously estimate it and optimize the designs in a single stochastic gradient scheme. In addition, to accommodate discrete actions within our framework, we propose leveraging continuous relaxation schemes, which can naturally be integrated into our variational objective. As a result, CO-BED provides a general and automated solution to a wide range of contextual optimization problems. We illustrate its effectiveness in a number of experiments, where CO-BED demonstrates competitive performance even when compared to bespoke, model-specific alternatives.