Goto

Collaborating Authors

 Rahwan, Talal


A Longitudinal Analysis of Racial and Gender Bias in New York Times and Fox News Images and Articles

arXiv.org Artificial Intelligence

The manner in which different racial and gender groups are portrayed in news coverage plays a large role in shaping public opinion. As such, understanding how such groups are portrayed in news media is of notable societal value, and has thus been a significant endeavour in both the computer and social sciences. Yet, the literature still lacks a longitudinal study examining both the frequency of appearance of different racial and gender groups in online news articles, as well as the context in which such groups are discussed. To fill this gap, we propose two machine learning classifiers to detect the race and age of a given subject. Next, we compile a dataset of 123,337 images and 441,321 online news articles from New York Times (NYT) and Fox News (Fox), and examine representation through two computational approaches. Firstly, we examine the frequency and prominence of appearance of racial and gender groups in images embedded in news articles, revealing that racial and gender minorities are largely under-represented, and when they do appear, they are featured less prominently compared to majority groups. Furthermore, we find that NYT largely features more images of racial minority groups compared to Fox. Secondly, we examine both the frequency and context with which racial minority groups are presented in article text. This reveals the narrow scope in which certain racial groups are covered and the frequency with which different groups are presented as victims and/or perpetrators in a given conflict. Taken together, our analysis contributes to the literature by providing two novel open-source classifiers to detect race and age from images, and shedding light on the racial and gender biases in news articles from venues on opposite ends of the American political spectrum.


Large Language Models Overcome the Machine Penalty When Acting Fairly but Not When Acting Selfishly or Altruistically

arXiv.org Artificial Intelligence

In social dilemmas where the collective and self-interests are at odds, people typically cooperate less with machines than with fellow humans, a phenomenon termed the machine penalty. Overcoming this penalty is critical for successful human-machine collectives, yet current solutions often involve ethically-questionable tactics, like concealing machines' non-human nature. In this study, with 1,152 participants, we explore the possibility of closing this research question by using Large Language Models (LLMs), in scenarios where communication is possible between interacting parties. We design three types of LLMs: (i) Cooperative, aiming to assist its human associate; (ii) Selfish, focusing solely on maximizing its self-interest; and (iii) Fair, balancing its own and collective interest, while slightly prioritizing self-interest. Our findings reveal that, when interacting with humans, fair LLMs are able to induce cooperation levels comparable to those observed in human-human interactions, even when their non-human nature is fully disclosed. In contrast, selfish and cooperative LLMs fail to achieve this goal. Post-experiment analysis shows that all three types of LLMs succeed in forming mutual cooperation agreements with humans, yet only fair LLMs, which occasionally break their promises, are capable of instilling a perception among humans that cooperating with them is the social norm, and eliciting positive views on their trustworthiness, mindfulness, intelligence, and communication quality. Our findings suggest that for effective human-machine cooperation, bot manufacturers should avoid designing machines with mere rational decision-making or a sole focus on assisting humans. Instead, they should design machines capable of judiciously balancing their own interest and the interest of humans.


Hack Me If You Can: Aggregating AutoEncoders for Countering Persistent Access Threats Within Highly Imbalanced Data

arXiv.org Artificial Intelligence

Advanced Persistent Threats (APTs) are sophisticated, targeted cyberattacks designed to gain unauthorized access to systems and remain undetected for extended periods. To evade detection, APT cyberattacks deceive defense layers with breaches and exploits, thereby complicating exposure by traditional anomaly detection-based security methods. The challenge of detecting APTs with machine learning is compounded by the rarity of relevant datasets and the significant imbalance in the data, which makes the detection process highly burdensome. We present AE-APT, a deep learning-based tool for APT detection that features a family of AutoEncoder methods ranging from a basic one to a Transformer-based one. We evaluated our tool on a suite of provenance trace databases produced by the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004% of the data. The datasets span multiple operating systems, including Android, Linux, BSD, and Windows, and cover two attack scenarios. The outcomes showed that AE-APT has significantly higher detection rates compared to its competitors, indicating superior performance in detecting and ranking anomalies.


Self-Reflection Outcome is Sensitive to Prompt Construction

arXiv.org Artificial Intelligence

Large language models (LLMs) demonstrate impressive zero-shot and few-shot reasoning capabilities. Some propose that such capabilities can be improved through self-reflection, i.e., letting LLMs reflect on their own output to identify and correct mistakes in the initial responses. However, despite some evidence showing the benefits of self-reflection, recent studies offer mixed results. Here, we aim to reconcile these conflicting findings by first demonstrating that the outcome of self-reflection is sensitive to prompt wording; e.g., LLMs are more likely to conclude that it has made a mistake when explicitly prompted to find mistakes. Consequently, idiosyncrasies in reflection prompts may lead LLMs to change correct responses unnecessarily. We show that most prompts used in the self-reflection literature are prone to this bias. We then propose different ways of constructing prompts that are conservative in identifying mistakes and show that self-reflection using such prompts results in higher accuracy. Our findings highlight the importance of prompt engineering in self-reflection tasks. We release our code at https://github.com/Michael98Liu/mixture-of-prompts.


A Novel BERT-based Classifier to Detect Political Leaning of YouTube Videos based on their Titles

arXiv.org Artificial Intelligence

A quarter of US adults regularly get their news from YouTube. Yet, despite the massive political content available on the platform, to date no classifier has been proposed to identify the political leaning of YouTube videos. To fill this gap, we propose a novel classifier based on Bert -- a language model from Google -- to classify YouTube videos merely based on their titles into six categories, namely: Far Left, Left, Center, Anti-Woke, Right, and Far Right. We used a public dataset of 10 million YouTube video titles (under various categories) to train and validate the proposed classifier. We compare the classifier against several alternatives that we trained on the same dataset, revealing that our classifier achieves the highest accuracy (75%) and the highest F1 score (77%). To further validate the classification performance, we collect videos from YouTube channels of numerous prominent news agencies, such as Fox News and New York Times, which have widely known political leanings, and apply our classifier to their video titles. For the vast majority of cases, the predicted political leaning matches that of the news agency.


AI-generated faces free from racial and gender stereotypes

arXiv.org Artificial Intelligence

Text-to-image generative AI models such as Stable Diffusion are used daily by millions worldwide. However, many have raised concerns regarding how these models amplify racial and gender stereotypes. To study this phenomenon, we develop a classifier to predict the race, gender, and age group of any given face image, and show that it achieves state-of-the-art performance. Using this classifier, we quantify biases in Stable Diffusion across six races, two genders, five age groups, 32 professions, and eight attributes. We then propose novel debiasing solutions that outperform state-of-the-art alternatives. Additionally, we examine the degree to which Stable Diffusion depicts individuals of the same race as being similar to one another. This analysis reveals a high degree of stereotyping, e.g., depicting most middle eastern males as being dark-skinned, bearded, and wearing a traditional headdress. We address these limitations by proposing yet another novel solution that increases facial diversity across genders and racial groups. Our solutions are open-sourced and made publicly available.


Coupled-Space Attacks against Random-Walk-based Anomaly Detection

arXiv.org Artificial Intelligence

Random Walks-based Anomaly Detection (RWAD) is commonly used to identify anomalous patterns in various applications. An intriguing characteristic of RWAD is that the input graph can either be pre-existing or constructed from raw features. Consequently, there are two potential attack surfaces against RWAD: graph-space attacks and feature-space attacks. In this paper, we explore this vulnerability by designing practical coupled-space attacks, investigating the interplay between graph-space and feature-space attacks. To this end, we conduct a thorough complexity analysis, proving that attacking RWAD is NP-hard. Then, we proceed to formulate the graph-space attack as a bi-level optimization problem and propose two strategies to solve it: alternative iteration (alterI-attack) or utilizing the closed-form solution of the random walk model (cf-attack). Finally, we utilize the results from the graph-space attacks as guidance to design more powerful feature-space attacks (i.e., graph-guided attacks). Comprehensive experiments demonstrate that our proposed attacks are effective in enabling the target nodes from RWAD with a limited attack budget. In addition, we conduct transfer attack experiments in a black-box setting, which show that our feature attack significantly decreases the anomaly scores of target nodes. Our study opens the door to studying the coupled-space attack against graph anomaly detection in which the graph space relies on the feature space.


HowkGPT: Investigating the Detection of ChatGPT-generated University Student Homework through Context-Aware Perplexity Analysis

arXiv.org Artificial Intelligence

As the use of Large Language Models (LLMs) in text generation tasks proliferates, concerns arise over their potential to compromise academic integrity. The education sector currently tussles with distinguishing student-authored homework assignments from AI-generated ones. This paper addresses the challenge by introducing HowkGPT, designed to identify homework assignments generated by AI. HowkGPT is built upon a dataset of academic assignments and accompanying metadata [17] and employs a pretrained LLM to compute perplexity scores for student-authored and ChatGPT-generated responses. These scores then assist in establishing a threshold for discerning the origin of a submitted assignment. Given the specificity and contextual nature of academic work, HowkGPT further refines its analysis by defining category-specific thresholds derived from the metadata, enhancing the precision of the detection. This study emphasizes the critical need for effective strategies to uphold academic integrity amidst the growing influence of LLMs and provides an approach to ensuring fair and accurate grading in educational institutions.


Perception, performance, and detectability of conversational artificial intelligence across 32 university courses

arXiv.org Artificial Intelligence

The emergence of large language models has led to the development of powerful tools such as ChatGPT that can produce text indistinguishable from human-generated work. With the increasing accessibility of such technology, students across the globe may utilize it to help with their school work -- a possibility that has sparked discussions on the integrity of student evaluations in the age of artificial intelligence (AI). To date, it is unclear how such tools perform compared to students on university-level courses. Further, students' perspectives regarding the use of such tools, and educators' perspectives on treating their use as plagiarism, remain unknown. Here, we compare the performance of ChatGPT against students on 32 university-level courses. We also assess the degree to which its use can be detected by two classifiers designed specifically for this purpose. Additionally, we conduct a survey across five countries, as well as a more in-depth survey at the authors' institution, to discern students' and educators' perceptions of ChatGPT's use. We find that ChatGPT's performance is comparable, if not superior, to that of students in many courses. Moreover, current AI-text classifiers cannot reliably detect ChatGPT's use in school work, due to their propensity to classify human-written answers as AI-generated, as well as the ease with which AI-generated text can be edited to evade detection. Finally, we find an emerging consensus among students to use the tool, and among educators to treat this as plagiarism. Our findings offer insights that could guide policy discussions addressing the integration of AI into educational frameworks.


Human intuition as a defense against attribute inference

arXiv.org Artificial Intelligence

Attribute inference - the process of analyzing publicly available data in order to uncover hidden information - has become a major threat to privacy, given the recent technological leap in machine learning. One way to tackle this threat is to strategically modify one's publicly available data in order to keep one's private information hidden from attribute inference. We evaluate people's ability to perform this task, and compare it against algorithms designed for this purpose. We focus on three attributes: the gender of the author of a piece of text, the country in which a set of photos was taken, and the link missing from a social network. For each of these attributes, we find that people's effectiveness is inferior to that of AI, especially when it comes to hiding the attribute in question. Moreover, when people are asked to modify the publicly available information in order to hide these attributes, they are less likely to make high-impact modifications compared to AI. This suggests that people are unable to recognize the aspects of the data that are critical to an inference algorithm. Taken together, our findings highlight the limitations of relying on human intuition to protect privacy in the age of AI, and emphasize the need for algorithmic support to protect private information from attribute inference.