Raghavan, Vivek
IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages
Gala, Jay, Chitale, Pranjal A., AK, Raghavan, Gumma, Varun, Doddapaneni, Sumanth, Kumar, Aswanth, Nawale, Janki, Sujatha, Anupama, Puduppully, Ratish, Raghavan, Vivek, Kumar, Pratyush, Khapra, Mitesh M., Dabre, Raj, Kunchukuttan, Anoop
India has a rich linguistic landscape with languages from 4 major language families spoken by over a billion people. 22 of these languages are listed in the Constitution of India (referred to as scheduled languages) are the focus of this work. Given the linguistic diversity, high-quality and accessible Machine Translation (MT) systems are essential in a country like India. Prior to this work, there was (i) no parallel training data spanning all 22 languages, (ii) no robust benchmarks covering all these languages and containing content relevant to India, and (iii) no existing translation models which support all the 22 scheduled languages of India. In this work, we aim to address this gap by focusing on the missing pieces required for enabling wide, easy, and open access to good machine translation systems for all 22 scheduled Indian languages. We identify four key areas of improvement: curating and creating larger training datasets, creating diverse and high-quality benchmarks, training multilingual models, and releasing models with open access. Our first contribution is the release of the Bharat Parallel Corpus Collection (BPCC), the largest publicly available parallel corpora for Indic languages. BPCC contains a total of 230M bitext pairs, of which a total of 126M were newly added, including 644K manually translated sentence pairs created as part of this work. Our second contribution is the release of the first n-way parallel benchmark covering all 22 Indian languages, featuring diverse domains, Indian-origin content, and source-original test sets. Next, we present IndicTrans2, the first model to support all 22 languages, surpassing existing models on multiple existing and new benchmarks created as a part of this work. Lastly, to promote accessibility and collaboration, we release our models and associated data with permissive licenses at https://github.com/AI4Bharat/IndicTrans2.
Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages
Ramesh, Gowtham, Doddapaneni, Sumanth, Bheemaraj, Aravinth, Jobanputra, Mayank, AK, Raghavan, Sharma, Ajitesh, Sahoo, Sujit, Diddee, Harshita, J, Mahalakshmi, Kakwani, Divyanshu, Kumar, Navneet, Pradeep, Aswin, Nagaraj, Srihari, Deepak, Kumar, Raghavan, Vivek, Kunchukuttan, Anoop, Kumar, Pratyush, Khapra, Mitesh Shantadevi
We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly-available parallel corpora, and additionally mine 37.4 million sentence pairs from the web, resulting in a 4x increase. We mine the parallel sentences from the web by combining many corpora, tools, and methods: (a) web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar, which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at https://ai4bharat.iitm.ac.in/samanantar and we hope they will help advance research in NMT and multilingual NLP for Indic languages.
SemEval 2023 Task 6: LegalEval - Understanding Legal Texts
Modi, Ashutosh, Kalamkar, Prathamesh, Karn, Saurabh, Tiwari, Aman, Joshi, Abhinav, Tanikella, Sai Kiran, Guha, Shouvik Kumar, Malhan, Sachin, Raghavan, Vivek
In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams.
Corpus for Automatic Structuring of Legal Documents
Kalamkar, Prathamesh, Tiwari, Aman, Agarwal, Astha, Karn, Saurabh, Gupta, Smita, Raghavan, Vivek, Modi, Ashutosh
In populous countries, pending legal cases have been growing exponentially. There is a need for developing techniques for processing and organizing legal documents. In this paper, we introduce a new corpus for structuring legal documents. In particular, we introduce a corpus of legal judgment documents in English that are segmented into topical and coherent parts. Each of these parts is annotated with a label coming from a list of pre-defined Rhetorical Roles. We develop baseline models for automatically predicting rhetorical roles in a legal document based on the annotated corpus. Further, we show the application of rhetorical roles to improve performance on the tasks of summarization and legal judgment prediction. We release the corpus and baseline model code along with the paper.