Rafael Frongillo
Eliciting Categorical Data for Optimal Aggregation
Chien-Ju Ho, Rafael Frongillo, Yiling Chen
Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.
Convex Elicitation of Continuous Properties
Jessica Finocchiaro, Rafael Frongillo
A property or statistic of a distribution is said to be elicitable if it can be expressed as the minimizer of some loss function in expectation. Recent work shows that continuous real-valued properties are elicitable if and only if they are identifiable, meaning the set of distributions with the same property value can be described by linear constraints. From a practical standpoint, one may ask for which such properties do there exist convex loss functions. In this paper, in a finite-outcome setting, we show that in fact essentially every elicitable real-valued property can be elicited by a convex loss function. Our proof is constructive, and leads to convex loss functions for new properties.
Bounded-Loss Private Prediction Markets
Rafael Frongillo, Bo Waggoner
Prior work has investigated variations of prediction markets that preserve participants' (differential) privacy, which formed the basis of useful mechanisms for purchasing data for machine learning objectives. Such markets required potentially unlimited financial subsidy, however, making them impractical. In this work, we design an adaptively-growing prediction market with a bounded financial subsidy, while achieving privacy, incentives to produce accurate predictions, and precision in the sense that market prices are not heavily impacted by the added privacy-preserving noise. We briefly discuss how our mechanism can extend to the data-purchasing setting, and its relationship to traditional learning algorithms.
Convex Elicitation of Continuous Properties
Jessica Finocchiaro, Rafael Frongillo
A property or statistic of a distribution is said to be elicitable if it can be expressed as the minimizer of some loss function in expectation. Recent work shows that continuous real-valued properties are elicitable if and only if they are identifiable, meaning the set of distributions with the same property value can be described by linear constraints. From a practical standpoint, one may ask for which such properties do there exist convex loss functions. In this paper, in a finite-outcome setting, we show that in fact essentially every elicitable real-valued property can be elicited by a convex loss function. Our proof is constructive, and leads to convex loss functions for new properties.
Bounded-Loss Private Prediction Markets
Rafael Frongillo, Bo Waggoner
Eliciting Categorical Data for Optimal Aggregation
Chien-Ju Ho, Rafael Frongillo, Yiling Chen
Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.