Goto

Collaborating Authors

 Radhakrishnan, Prashanth


Knowing When to Ask -- Bridging Large Language Models and Data

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are prone to generating factually incorrect information when responding to queries that involve numerical and statistical data or other timely facts. In this paper, we present an approach for enhancing the accuracy of LLMs by integrating them with Data Commons, a vast, open-source repository of public statistics from trusted organizations like the United Nations (UN), Center for Disease Control and Prevention (CDC) and global census bureaus. We explore two primary methods: Retrieval Interleaved Generation (RIG), where the LLM is trained to produce natural language queries to retrieve data from Data Commons, and Retrieval Augmented Generation (RAG), where relevant data tables are fetched from Data Commons and used to augment the LLM's prompt. We evaluate these methods on a diverse set of queries, demonstrating their effectiveness in improving the factual accuracy of LLM outputs. Our work represents an early step towards building more trustworthy and reliable LLMs that are grounded in verifiable statistical data and capable of complex factual reasoning.


Data Commons

arXiv.org Artificial Intelligence

Publicly available data from open sources (e.g., United States Census Bureau (Census), World Health Organization (WHO), Intergovernmental Panel on Climate Change (IPCC)) are vital resources for policy makers, students and researchers across different disciplines. Combining data from different sources requires the user to reconcile the differences in schemas, formats, assumptions, and more. This data wrangling is time consuming, tedious and needs to be repeated by every user of the data. Our goal with Data Commons (DC) is to help make public data accessible and useful to those who want to understand this data and use it to solve societal challenges and opportunities. We do the data processing and make the processed data widely available via standard schemas and Cloud APIs. Data Commons is a distributed network of sites that publish data in a common schema and interoperate using the Data Commons APIs. Data from different Data Commons can be joined easily. The aggregate of these Data Commons can be viewed as a single Knowledge Graph. This Knowledge Graph can then be searched over using Natural Language questions utilizing advances in Large Language Models. This paper describes the architecture of Data Commons, some of the major deployments and highlights directions for future work.