Goto

Collaborating Authors

 Radhakrishnan, Jainarayan


An Ensemble Learning and Problem Solving Architecture for Airspace Management

AAAI Conferences

In this paper we describe the application of a novel learning and problem solving architecture to the domain of airspace management, where multiple requests for the use of airspace need to be reconciled and managed automatically. The key feature of our "Generalized Integrated Learning Architecture" (GILA) is a set of integrated learning and reasoning (ILR) systems coordinated by a central meta-reasoning executive (MRE). Each ILR learns independently from the same training example and contributes to problem-solving in concert with other ILRs as directed by the MRE. Formal evaluations show that our system performs as well as or better than humans after learning from the same training data. Further, GILA outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble architecture for learning and problem solving.


Goal-Driven Learning in the GILA Integrated Intelligence Architecture

AAAI Conferences

Goal Driven Learning (GDL) focuses on systems that determine by themselves what has to be learnt and how to learn it. Typically GDL systems use meta-reasoning capabilities over a base {\em reasoner}, identifying learning goals and devising strategies. In this paper we present a novel GDL technique to deal with complex AI systems where the meta-reasoning module has to analyze the reasoning trace of multiple components with potentially different learning paradigms. Our approach works by distributing the generation of learning strategies among the different modules instead of centralizing it in the meta-reasoner. We implemented our technique in the GILA system, that works in the airspace task orders domain, showing an increase in performance.