Goto

Collaborating Authors

 Rabin, Md Rafiqul Islam


Harnessing the Power of LLMs: Automating Unit Test Generation for High-Performance Computing

arXiv.org Artificial Intelligence

Unit testing is crucial in software engineering for ensuring quality. However, it's not widely used in parallel and high-performance computing software, particularly scientific applications, due to their smaller, diverse user base and complex logic. These factors make unit testing challenging and expensive, as it requires specialized knowledge and existing automated tools are often ineffective. To address this, we propose an automated method for generating unit tests for such software, considering their unique features like complex logic and parallel processing. Recently, large language models (LLMs) have shown promise in coding and testing. We explored the capabilities of Davinci (text-davinci-002) and ChatGPT (gpt-3.5-turbo) in creating unit tests for C++ parallel programs. Our results show that LLMs can generate mostly correct and comprehensive unit tests, although they have some limitations, such as repetitive assertions and blank test cases.


Trojans in Large Language Models of Code: A Critical Review through a Trigger-Based Taxonomy

arXiv.org Artificial Intelligence

Large language models (LLMs) have provided a lot of exciting new capabilities in software development. However, the opaque nature of these models makes them difficult to reason about and inspect. Their opacity gives rise to potential security risks, as adversaries can train and deploy compromised models to disrupt the software development process in the victims' organization. This work presents an overview of the current state-of-the-art trojan attacks on large language models of code, with a focus on triggers -- the main design point of trojans -- with the aid of a novel unifying trigger taxonomy framework. We also aim to provide a uniform definition of the fundamental concepts in the area of trojans in Code LLMs. Finally, we draw implications of findings on how code models learn on trigger design.


On Trojan Signatures in Large Language Models of Code

arXiv.org Artificial Intelligence

Trojan signatures, as described by Fields et al. (2021), are noticeable differences in the distribution of the trojaned class parameters (weights) and the non-trojaned class parameters of the trojaned model, that can be used to detect the trojaned model. Fields et al. (2021) found trojan signatures in computer vision classification tasks with image models, such as, Resnet, WideResnet, Densenet, and VGG. In this paper, we investigate such signatures in the classifier layer parameters of large language models of source code. Our results suggest that trojan signatures could not generalize to LLMs of code. We found that trojaned code models are stubborn, even when the models were poisoned under more explicit settings (finetuned with pre-trained weights frozen). We analyzed nine trojaned models for two binary classification tasks: clone and defect detection. To the best of our knowledge, this is the first work to examine weight-based trojan signature revelation techniques for large-language models of code and furthermore to demonstrate that detecting trojans only from the weights in such models is a hard problem.


Quality and Trust in LLM-generated Code

arXiv.org Artificial Intelligence

Machine learning models are widely used but can also often be wrong. Users would benefit from a reliable indication of whether a given output from a given model should be trusted, so a rational decision can be made whether to use the output or not. For example, outputs can be associated with a confidence measure; if this confidence measure is strongly associated with likelihood of correctness, then the model is said to be well-calibrated. In this case, for example, high-confidence outputs could be safely accepted, and low-confidence outputs rejected. Calibration has so far been studied in non-generative (e.g., classification) settings, especially in Software Engineering. However, generated code can quite often be wrong: Developers need to know when they should e.g., directly use, use after careful review, or discard model-generated code; thus Calibration is vital in generative settings. However, the notion of correctness of generated code is non-trivial, and thus so is Calibration. In this paper we make several contributions. We develop a framework for evaluating the Calibration of code-generating models. We consider several tasks, correctness criteria, datasets, and approaches, and find that by and large generative code models are not well-calibrated out of the box. We then show how Calibration can be improved, using standard methods such as Platt scaling. Our contributions will lead to better-calibrated decision-making in the current use of code generated by language models, and offers a framework for future research to further improve calibration methods for generative models in Software Engineering.


A Study of Variable-Role-based Feature Enrichment in Neural Models of Code

arXiv.org Artificial Intelligence

Although deep neural models substantially reduce the overhead of feature engineering, the features readily available in the inputs might significantly impact training cost and the performance of the models. In this paper, we explore the impact of an unsuperivsed feature enrichment approach based on variable roles on the performance of neural models of code. The notion of variable roles (as introduced in the works of Sajaniemi et al. [Refs. 1,2]) has been found to help students' abilities in programming. In this paper, we investigate if this notion would improve the performance of neural models of code. To the best of our knowledge, this is the first work to investigate how Sajaniemi et al.'s concept of variable roles can affect neural models of code. In particular, we enrich a source code dataset by adding the role of individual variables in the dataset programs, and thereby conduct a study on the impact of variable role enrichment in training the Code2Seq model. In addition, we shed light on some challenges and opportunities in feature enrichment for neural code intelligence models.


Study of Distractors in Neural Models of Code

arXiv.org Artificial Intelligence

Finding important features that contribute to the prediction of neural models is an active area of research in explainable AI. Neural models are opaque and finding such features sheds light on a better understanding of their predictions. In contrast, in this work, we present an inverse perspective of distractor features: features that cast doubt about the prediction by affecting the model's confidence in its prediction. Understanding distractors provide a complementary view of the features' relevance in the predictions of neural models. In this paper, we apply a reduction-based technique to find distractors and provide our preliminary results of their impacts and types. Our experiments across various tasks, models, and datasets of code reveal that the removal of tokens can have a significant impact on the confidence of models in their predictions and the categories of tokens can also play a vital role in the model's confidence. Our study aims to enhance the transparency of models by emphasizing those tokens that significantly influence the confidence of the models.


Code2Snapshot: Using Code Snapshots for Learning Representations of Source Code

arXiv.org Artificial Intelligence

There are several approaches for encoding source code in the input vectors of neural models. These approaches attempt to include various syntactic and semantic features of input programs in their encoding. In this paper, we investigate Code2Snapshot, a novel representation of the source code that is based on the snapshots of input programs. We evaluate several variations of this representation and compare its performance with state-of-the-art representations that utilize the rich syntactic and semantic features of input programs. Our preliminary study on the utility of Code2Snapshot in the code summarization and code classification tasks suggests that simple snapshots of input programs have comparable performance to state-of-the-art representations. Interestingly, obscuring input programs have insignificant impacts on the Code2Snapshot performance, suggesting that, for some tasks, neural models may provide high performance by relying merely on the structure of input programs.


Towards Demystifying Dimensions of Source Code Embeddings

arXiv.org Machine Learning

Source code representations are key in applying machine learning techniques for processing and analyzing programs. A popular approach in representing source code is neural source code embeddings that represents programs with high-dimensional vectors computed by training deep neural networks on a large volume of programs. Although successful, there is little known about the contents of these vectors and their characteristics. In this paper, we present our preliminary results towards better understanding the contents of code2vec neural source code embeddings. In particular, in a small case study, we use the code2vec embeddings to create binary SVM classifiers and compare their performance with the handcrafted features. Our results suggest that the handcrafted features can perform very close to the highly-dimensional code2vec embeddings, and the information gains are more evenly distributed in the code2vec embeddings compared to the handcrafted features. We also find that the code2vec embeddings are more resilient to the removal of dimensions with low information gains than the handcrafted features. We hope our results serve a stepping stone toward principled analysis and evaluation of these code representations.


Testing Neural Program Analyzers

arXiv.org Machine Learning

Deep neural networks have been increasingly used in software engineering and program analysis tasks. They usually take a program and make some predictions about it, e.g., bug prediction. We call these models neural program analyzers. The reliability of neural programs can impact the reliability of the encompassing analyses. In this paper, we describe our ongoing efforts to develop effective techniques for testing neural programs. We discuss the challenges involved in developing such tools and our future plans. In our preliminary experiment on a neural model recently proposed in the literature, we found that the model is very brittle, and simple perturbations in the input can cause the model to make mistakes in its prediction.