Rühle, Victor
TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning
Shandilya, Shivam, Xia, Menglin, Ghosh, Supriyo, Jiang, Huiqiang, Zhang, Jue, Wu, Qianhui, Rühle, Victor
The increasing prevalence of large language models (LLMs) such as GPT-4 in various applications has led to a surge in the size of prompts required for optimal performance, leading to challenges in computational efficiency. Prompt compression aims to reduce the inference cost by minimizing input tokens without compromising on the task performance. However, existing prompt compression techniques either rely on sub-optimal metrics such as information entropy or model it as a task-agnostic token classification problem that fails to capture task-specific information. To address these issues, we propose a novel and efficient reinforcement learning (RL) based task-aware prompt compression method. To ensure low latency requirements, we leverage existing Transformer encoder-based token classification model while guiding the learning process with task-specific reward signals using lightweight REINFORCE algorithm. We evaluate the performance of our method on three diverse and challenging tasks including text summarization, question answering and code summarization. We demonstrate that our RL-guided compression method improves the task performance by 8% - 189% across these three scenarios over state-of-the-art compression techniques while satisfying the same compression rate and latency requirements.
Ensuring Fair LLM Serving Amid Diverse Applications
Khan, Redwan Ibne Seraj, Jain, Kunal, Shen, Haiying, Mallick, Ankur, Parayil, Anjaly, Kulkarni, Anoop, Kofsky, Steve, Choudhary, Pankhuri, Amant, Renèe St., Wang, Rujia, Cheng, Yue, Butt, Ali R., Rühle, Victor, Bansal, Chetan, Rajmohan, Saravan
In a multi-tenant large language model (LLM) serving platform hosting diverse applications, some users may submit an excessive number of requests, causing the service to become unavailable to other users and creating unfairness. Existing fairness approaches do not account for variations in token lengths across applications and multiple LLM calls, making them unsuitable for such platforms. To address the fairness challenge, this paper analyzes millions of requests from thousands of users on MS CoPilot, a real-world multi-tenant LLM platform hosted by Microsoft. Our analysis confirms the inadequacy of existing methods and guides the development of FairServe, a system that ensures fair LLM access across diverse applications. FairServe proposes application-characteristic aware request throttling coupled with a weighted service counter based scheduling technique to curb abusive behavior and ensure fairness. Our experimental results on real-world traces demonstrate FairServe's superior performance compared to the state-of-the-art method in ensuring fairness. We are actively working on deploying our system in production, expecting to benefit millions of customers world-wide.
EcoAct: Economic Agent Determines When to Register What Action
Zhang, Shaokun, Zhang, Jieyu, Ding, Dujian, Garcia, Mirian Hipolito, Mallick, Ankur, Madrigal, Daniel, Xia, Menglin, Rühle, Victor, Wu, Qingyun, Wang, Chi
Recent advancements have enabled Large Language Models (LLMs) to function as agents that can perform actions using external tools. This requires registering, i.e., integrating tool information into the LLM context prior to taking actions. Current methods indiscriminately incorporate all candidate tools into the agent's context and retain them across multiple reasoning steps. This process remains opaque to LLM agents and is not integrated into their reasoning procedures, leading to inefficiencies due to increased context length from irrelevant tools. To address this, we introduce EcoAct, a tool using algorithm that allows LLMs to selectively register tools as needed, optimizing context use. By integrating the tool registration process into the reasoning procedure, EcoAct reduces computational costs by over 50% in multiple steps reasoning tasks while maintaining performance, as demonstrated through extensive experiments. Moreover, it can be plugged into any reasoning pipeline with only minor modifications to the prompt, making it applicable to LLM agents now and future.
Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers
Sanovar, Rya, Bharadwaj, Srikant, Amant, Renee St., Rühle, Victor, Rajmohan, Saravan
Transformer-based models have emerged as one of the most widely used architectures for natural language processing, natural language generation, and image generation. The size of the state-of-the-art models has increased steadily reaching billions of parameters. These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators, such as GPUs. Specifically, the time and memory complexity of the attention operation is quadratic in terms of the total context length, i.e., prompt and output tokens. Thus, several optimizations such as key-value tensor caching and FlashAttention computation have been proposed to deliver the low latency demands of applications relying on such large models. However, these techniques do not cater to the computationally distinct nature of different phases during inference. To that end, we propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase (decode-phase) of decoder-only transformer models. LeanAttention enables scaling the attention mechanism implementation for the challenging case of long context lengths by re-designing the execution flow for the decode-phase. We identify that the associative property of online softmax can be treated as a reduction operation thus allowing us to parallelize the attention computation over these large context lengths. We extend the "stream-K" style reduction of tiled calculation to self-attention to enable parallel computation resulting in an average of 2.6x attention execution speedup over FlashAttention-2 and up to 8.33x speedup for 512k context lengths.
LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
Pan, Zhuoshi, Wu, Qianhui, Jiang, Huiqiang, Xia, Menglin, Luo, Xufang, Zhang, Jue, Lin, Qingwei, Rühle, Victor, Yang, Yuqing, Lin, Chin-Yew, Zhao, H. Vicky, Qiu, Lili, Zhang, Dongmei
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective. To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT. We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.
Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective
Wutschitz, Lukas, Köpf, Boris, Paverd, Andrew, Rajmohan, Saravan, Salem, Ahmed, Tople, Shruti, Zanella-Béguelin, Santiago, Xia, Menglin, Rühle, Victor
Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.